Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387641387> ?p ?o ?g. }
- W4387641387 endingPage "122088" @default.
- W4387641387 startingPage "122088" @default.
- W4387641387 abstract "Plagiarism detection (PD) in natural language processing involves locating similar words in two distinct sources. The paper introduces a new approach to plagiarism detection utilizing bidirectional encoder representations from transformers (BERT)-generated embedding, an enhanced artificial bee colony (ABC) optimization algorithm for pre-training, and a training process based on reinforcement learning (RL). The BERT model can be incorporated into a subsequent task and meticulously refined to function as a model, enabling it to apprehend a variety of linguistic characteristics. Imbalanced classification is one of the fundamental obstacles to PD. To handle this predicament, we present a novel methodology utilizing RL, in which the problem is framed as a series of sequential decisions in which an agent receives a reward at each level for classifying a received instance. To address the disparity between classes, it is determined that the majority class will receive a lower reward than the minority class. We also focus on the training stage, which often utilizes gradient-based learning techniques like backpropagation (BP), leading to certain drawbacks such as sensitivity to initialization. In our proposed model, we utilize a mutual learning-based ABC (ML-ABC) approach that adjusts the food source with the most beneficial results for the candidate by considering a mutual learning factor that incorporates the initial weight. We evaluated the efficacy of our novel approach by contrasting its results with those of population-based techniques using three standard datasets, namely Stanford Natural Language Inference (SNLI), Microsoft Research Paraphrase Corpus (MSRP), and Semantic Evaluation Database (SemEval2014). Our model attained excellent results that outperformed state-of-the-art models. Optimal values for important parameters, including reward function are identified for the model based on experiments on the study dataset. Ablation studies that exclude the proposed ML-ABC and reinforcement learning from the model confirm the independent positive incremental impact of these components on model performance." @default.
- W4387641387 created "2023-10-15" @default.
- W4387641387 creator A5028834291 @default.
- W4387641387 creator A5045783666 @default.
- W4387641387 creator A5050144869 @default.
- W4387641387 creator A5053470735 @default.
- W4387641387 creator A5060499485 @default.
- W4387641387 creator A5080933055 @default.
- W4387641387 creator A5083567791 @default.
- W4387641387 date "2023-10-01" @default.
- W4387641387 modified "2023-10-15" @default.
- W4387641387 title "Efficient reinforcement learning-based method for plagiarism detection boosted by a population-based algorithm for pretraining weights" @default.
- W4387641387 cites W1595159159 @default.
- W4387641387 cites W1976744965 @default.
- W4387641387 cites W1994961181 @default.
- W4387641387 cites W2026653933 @default.
- W4387641387 cites W2056716515 @default.
- W4387641387 cites W2061438946 @default.
- W4387641387 cites W2104671598 @default.
- W4387641387 cites W2132791018 @default.
- W4387641387 cites W2143560894 @default.
- W4387641387 cites W2154822030 @default.
- W4387641387 cites W2154943049 @default.
- W4387641387 cites W2216407296 @default.
- W4387641387 cites W2250539671 @default.
- W4387641387 cites W2270070752 @default.
- W4387641387 cites W2290883490 @default.
- W4387641387 cites W2309023520 @default.
- W4387641387 cites W2440599146 @default.
- W4387641387 cites W2500036977 @default.
- W4387641387 cites W2551429935 @default.
- W4387641387 cites W2555780822 @default.
- W4387641387 cites W2740234477 @default.
- W4387641387 cites W2788343755 @default.
- W4387641387 cites W2897461536 @default.
- W4387641387 cites W2899676218 @default.
- W4387641387 cites W2913323467 @default.
- W4387641387 cites W3007783271 @default.
- W4387641387 cites W3080524877 @default.
- W4387641387 cites W3083527349 @default.
- W4387641387 cites W3109895324 @default.
- W4387641387 cites W3126813721 @default.
- W4387641387 cites W3142798943 @default.
- W4387641387 cites W3151089426 @default.
- W4387641387 cites W3197186879 @default.
- W4387641387 cites W3202879004 @default.
- W4387641387 cites W3205920325 @default.
- W4387641387 cites W3215017813 @default.
- W4387641387 cites W4206017373 @default.
- W4387641387 cites W4210838854 @default.
- W4387641387 cites W4210890279 @default.
- W4387641387 cites W4225674167 @default.
- W4387641387 cites W4283729920 @default.
- W4387641387 cites W4285219717 @default.
- W4387641387 cites W4293586385 @default.
- W4387641387 cites W4313174306 @default.
- W4387641387 cites W4313479160 @default.
- W4387641387 cites W4319081221 @default.
- W4387641387 cites W4323059284 @default.
- W4387641387 cites W4324125178 @default.
- W4387641387 cites W4361275963 @default.
- W4387641387 cites W4365801669 @default.
- W4387641387 cites W4379116850 @default.
- W4387641387 cites W4379805355 @default.
- W4387641387 cites W4385147221 @default.
- W4387641387 doi "https://doi.org/10.1016/j.eswa.2023.122088" @default.
- W4387641387 hasPublicationYear "2023" @default.
- W4387641387 type Work @default.
- W4387641387 citedByCount "0" @default.
- W4387641387 crossrefType "journal-article" @default.
- W4387641387 hasAuthorship W4387641387A5028834291 @default.
- W4387641387 hasAuthorship W4387641387A5045783666 @default.
- W4387641387 hasAuthorship W4387641387A5050144869 @default.
- W4387641387 hasAuthorship W4387641387A5053470735 @default.
- W4387641387 hasAuthorship W4387641387A5060499485 @default.
- W4387641387 hasAuthorship W4387641387A5080933055 @default.
- W4387641387 hasAuthorship W4387641387A5083567791 @default.
- W4387641387 hasConcept C111919701 @default.
- W4387641387 hasConcept C114466953 @default.
- W4387641387 hasConcept C118505674 @default.
- W4387641387 hasConcept C119857082 @default.
- W4387641387 hasConcept C144024400 @default.
- W4387641387 hasConcept C149923435 @default.
- W4387641387 hasConcept C154945302 @default.
- W4387641387 hasConcept C199360897 @default.
- W4387641387 hasConcept C2780922921 @default.
- W4387641387 hasConcept C2908647359 @default.
- W4387641387 hasConcept C41008148 @default.
- W4387641387 hasConcept C97541855 @default.
- W4387641387 hasConceptScore W4387641387C111919701 @default.
- W4387641387 hasConceptScore W4387641387C114466953 @default.
- W4387641387 hasConceptScore W4387641387C118505674 @default.
- W4387641387 hasConceptScore W4387641387C119857082 @default.
- W4387641387 hasConceptScore W4387641387C144024400 @default.
- W4387641387 hasConceptScore W4387641387C149923435 @default.
- W4387641387 hasConceptScore W4387641387C154945302 @default.
- W4387641387 hasConceptScore W4387641387C199360897 @default.
- W4387641387 hasConceptScore W4387641387C2780922921 @default.