Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387641399> ?p ?o ?g. }
- W4387641399 endingPage "122153" @default.
- W4387641399 startingPage "122153" @default.
- W4387641399 abstract "Identifying standard fetal ultrasound (US) planes with key anatomical structures during mid-pregnancy prenatal screening is crucial for measuring fetal growth parameters and early detection of abnormalities. However, obtaining these standard planes is laborious and time-consuming and depends on the clinical experience of sonographers. Automatic detection of these planes can aid sonographers in identifying the correct standard planes. In recent times, various deep learning techniques have developed to automate the detection of standard fetal US planes. However, a common limitation among these approaches is their dependence on a single model prediction to make the final decision, which introduces the possibility of inaccuracies. Therefore, we propose an automated identification of commonly used standard fetal US planes based on the stacking ensemble of deep convolutional neural networks (CNN). The stacking ensemble method employs three pre-trained deep CNNs: AlexNet, VGG-19, and DarkNet-19. Softmax and random forest classifiers are used to get predictions from deep CNNs. The final prediction is made using the absolute majority voting technique. A publicly available fetal US dataset is employed to evaluate the performance of the stacking ensemble approach. The proposed ensemble model classifies fetal US planes into six distinct classes: abdomen, brain, femur, thorax, maternal cervix, and other (less commonly employed planes, such as kidney, and limbs) fetal planes. Experimental findings demonstrate that the stacking ensemble approach achieved high performance with an accuracy of 95.69 %, precision of 94.02 %, recall of 96.28 %, F1-score of 95.08 %, specificity of 99.12 %, and Matthews correlation coefficient of 94.19 % compared to individual deep CNN models and other competing methods." @default.
- W4387641399 created "2023-10-15" @default.
- W4387641399 creator A5035478550 @default.
- W4387641399 creator A5075079554 @default.
- W4387641399 date "2023-10-01" @default.
- W4387641399 modified "2023-10-15" @default.
- W4387641399 title "Standard fetal ultrasound plane classification based on stacked ensemble of deep learning models" @default.
- W4387641399 cites W2008056655 @default.
- W4387641399 cites W2030623877 @default.
- W4387641399 cites W2061715187 @default.
- W4387641399 cites W2080562691 @default.
- W4387641399 cites W2097117768 @default.
- W4387641399 cites W2139037570 @default.
- W4387641399 cites W2166743715 @default.
- W4387641399 cites W2183341477 @default.
- W4387641399 cites W2194775991 @default.
- W4387641399 cites W2429143165 @default.
- W4387641399 cites W2559785631 @default.
- W4387641399 cites W2570343428 @default.
- W4387641399 cites W2592929672 @default.
- W4387641399 cites W2611159092 @default.
- W4387641399 cites W2614217642 @default.
- W4387641399 cites W2735582614 @default.
- W4387641399 cites W2773747586 @default.
- W4387641399 cites W2888358068 @default.
- W4387641399 cites W2911964244 @default.
- W4387641399 cites W2917535023 @default.
- W4387641399 cites W2963125010 @default.
- W4387641399 cites W2963163009 @default.
- W4387641399 cites W2963446712 @default.
- W4387641399 cites W3021993456 @default.
- W4387641399 cites W3024361811 @default.
- W4387641399 cites W3029526682 @default.
- W4387641399 cites W3030790048 @default.
- W4387641399 cites W3036165397 @default.
- W4387641399 cites W3140120701 @default.
- W4387641399 cites W3143299112 @default.
- W4387641399 cites W3170903420 @default.
- W4387641399 cites W4211062209 @default.
- W4387641399 cites W4224128807 @default.
- W4387641399 cites W4224213643 @default.
- W4387641399 cites W4225597912 @default.
- W4387641399 cites W4280616996 @default.
- W4387641399 cites W4281784192 @default.
- W4387641399 cites W4382341014 @default.
- W4387641399 cites W4385628415 @default.
- W4387641399 doi "https://doi.org/10.1016/j.eswa.2023.122153" @default.
- W4387641399 hasPublicationYear "2023" @default.
- W4387641399 type Work @default.
- W4387641399 citedByCount "0" @default.
- W4387641399 crossrefType "journal-article" @default.
- W4387641399 hasAuthorship W4387641399A5035478550 @default.
- W4387641399 hasAuthorship W4387641399A5075079554 @default.
- W4387641399 hasConcept C108583219 @default.
- W4387641399 hasConcept C119857082 @default.
- W4387641399 hasConcept C119898033 @default.
- W4387641399 hasConcept C121332964 @default.
- W4387641399 hasConcept C153180895 @default.
- W4387641399 hasConcept C154945302 @default.
- W4387641399 hasConcept C169258074 @default.
- W4387641399 hasConcept C172680121 @default.
- W4387641399 hasConcept C2779234561 @default.
- W4387641399 hasConcept C2779811377 @default.
- W4387641399 hasConcept C33347731 @default.
- W4387641399 hasConcept C41008148 @default.
- W4387641399 hasConcept C45942800 @default.
- W4387641399 hasConcept C46141821 @default.
- W4387641399 hasConcept C54355233 @default.
- W4387641399 hasConcept C81363708 @default.
- W4387641399 hasConcept C86803240 @default.
- W4387641399 hasConceptScore W4387641399C108583219 @default.
- W4387641399 hasConceptScore W4387641399C119857082 @default.
- W4387641399 hasConceptScore W4387641399C119898033 @default.
- W4387641399 hasConceptScore W4387641399C121332964 @default.
- W4387641399 hasConceptScore W4387641399C153180895 @default.
- W4387641399 hasConceptScore W4387641399C154945302 @default.
- W4387641399 hasConceptScore W4387641399C169258074 @default.
- W4387641399 hasConceptScore W4387641399C172680121 @default.
- W4387641399 hasConceptScore W4387641399C2779234561 @default.
- W4387641399 hasConceptScore W4387641399C2779811377 @default.
- W4387641399 hasConceptScore W4387641399C33347731 @default.
- W4387641399 hasConceptScore W4387641399C41008148 @default.
- W4387641399 hasConceptScore W4387641399C45942800 @default.
- W4387641399 hasConceptScore W4387641399C46141821 @default.
- W4387641399 hasConceptScore W4387641399C54355233 @default.
- W4387641399 hasConceptScore W4387641399C81363708 @default.
- W4387641399 hasConceptScore W4387641399C86803240 @default.
- W4387641399 hasLocation W43876413991 @default.
- W4387641399 hasOpenAccess W4387641399 @default.
- W4387641399 hasPrimaryLocation W43876413991 @default.
- W4387641399 hasRelatedWork W1807784185 @default.
- W4387641399 hasRelatedWork W2188759683 @default.
- W4387641399 hasRelatedWork W2794896638 @default.
- W4387641399 hasRelatedWork W2944292463 @default.
- W4387641399 hasRelatedWork W2953079191 @default.
- W4387641399 hasRelatedWork W3014252901 @default.
- W4387641399 hasRelatedWork W3202800081 @default.
- W4387641399 hasRelatedWork W3208169454 @default.