Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387647162> ?p ?o ?g. }
- W4387647162 endingPage "117027" @default.
- W4387647162 startingPage "117027" @default.
- W4387647162 abstract "Deep neural network (NN) has become one of the common choices of surrogate model for reliability analysis of structural dynamic response under complex wind loads. However, the cost of data acquisition is usually prohibitive, making it hard for NN training to accurately replace the complex wind-structure coupled system using the limited data. In this work, a physics guided wavelet convolutional NN (PGwCNN) is regarded as surrogate model of a wind turbine tower (WinTT) and utilized for wind effects prediction. The law of dynamics is regarded as the prior knowledge and encoded in the NN, which can enhance the learning capability of the trained model. Then, the performance of the PGwCNN is demonstrated through the dynamic reliability analysis of a high and flexible WinTT using probability density evolution method (PDEM). What’s more, the L2 regularization and dropout layers are utilized to alleviate the overfitting issues. N-fold cross validation and grid search method are adopted to maximize the use of the limited training datasets. Results demonstrate that PGwCNN is capable to reach a compromise between efficiency and accuracy for predicting wind effects on the WinTT. In addition, the PGwCNN can effectively enhance the calculation efficiency of the reliability analysis." @default.
- W4387647162 created "2023-10-15" @default.
- W4387647162 creator A5000289914 @default.
- W4387647162 creator A5001004351 @default.
- W4387647162 creator A5003065832 @default.
- W4387647162 creator A5029535979 @default.
- W4387647162 creator A5064655103 @default.
- W4387647162 creator A5087549892 @default.
- W4387647162 date "2023-12-01" @default.
- W4387647162 modified "2023-10-15" @default.
- W4387647162 title "Physics guided wavelet convolutional neural network for wind-induced vibration modeling with application to structural dynamic reliability analysis" @default.
- W4387647162 cites W1867780335 @default.
- W4387647162 cites W1973622323 @default.
- W4387647162 cites W1978893680 @default.
- W4387647162 cites W1980418485 @default.
- W4387647162 cites W1982814196 @default.
- W4387647162 cites W1997790045 @default.
- W4387647162 cites W2006447203 @default.
- W4387647162 cites W2026445345 @default.
- W4387647162 cites W2026651112 @default.
- W4387647162 cites W2041963100 @default.
- W4387647162 cites W2044960217 @default.
- W4387647162 cites W2073764603 @default.
- W4387647162 cites W2075005436 @default.
- W4387647162 cites W2075621527 @default.
- W4387647162 cites W2079482981 @default.
- W4387647162 cites W2094887027 @default.
- W4387647162 cites W2139112186 @default.
- W4387647162 cites W2140223291 @default.
- W4387647162 cites W2157196944 @default.
- W4387647162 cites W2217283974 @default.
- W4387647162 cites W2268235864 @default.
- W4387647162 cites W2293747114 @default.
- W4387647162 cites W2578734600 @default.
- W4387647162 cites W2801077489 @default.
- W4387647162 cites W2890653035 @default.
- W4387647162 cites W2898712259 @default.
- W4387647162 cites W2899283552 @default.
- W4387647162 cites W2914681284 @default.
- W4387647162 cites W2921142464 @default.
- W4387647162 cites W2944851425 @default.
- W4387647162 cites W2946752227 @default.
- W4387647162 cites W2947525337 @default.
- W4387647162 cites W2950392564 @default.
- W4387647162 cites W2962998905 @default.
- W4387647162 cites W2999757591 @default.
- W4387647162 cites W3003923838 @default.
- W4387647162 cites W3004400478 @default.
- W4387647162 cites W3020308868 @default.
- W4387647162 cites W3022953487 @default.
- W4387647162 cites W3037134996 @default.
- W4387647162 cites W3081139699 @default.
- W4387647162 cites W3091807681 @default.
- W4387647162 cites W3093949277 @default.
- W4387647162 cites W3096149025 @default.
- W4387647162 cites W3109551881 @default.
- W4387647162 cites W3115111788 @default.
- W4387647162 cites W3176076094 @default.
- W4387647162 cites W4200475133 @default.
- W4387647162 cites W4200515818 @default.
- W4387647162 cites W4200568026 @default.
- W4387647162 cites W4200615523 @default.
- W4387647162 cites W4210943662 @default.
- W4387647162 cites W4311261982 @default.
- W4387647162 doi "https://doi.org/10.1016/j.engstruct.2023.117027" @default.
- W4387647162 hasPublicationYear "2023" @default.
- W4387647162 type Work @default.
- W4387647162 citedByCount "0" @default.
- W4387647162 crossrefType "journal-article" @default.
- W4387647162 hasAuthorship W4387647162A5000289914 @default.
- W4387647162 hasAuthorship W4387647162A5001004351 @default.
- W4387647162 hasAuthorship W4387647162A5003065832 @default.
- W4387647162 hasAuthorship W4387647162A5029535979 @default.
- W4387647162 hasAuthorship W4387647162A5064655103 @default.
- W4387647162 hasAuthorship W4387647162A5087549892 @default.
- W4387647162 hasConcept C119857082 @default.
- W4387647162 hasConcept C121332964 @default.
- W4387647162 hasConcept C127413603 @default.
- W4387647162 hasConcept C131675550 @default.
- W4387647162 hasConcept C154945302 @default.
- W4387647162 hasConcept C163258240 @default.
- W4387647162 hasConcept C22019652 @default.
- W4387647162 hasConcept C2778449969 @default.
- W4387647162 hasConcept C41008148 @default.
- W4387647162 hasConcept C43214815 @default.
- W4387647162 hasConcept C47432892 @default.
- W4387647162 hasConcept C50644808 @default.
- W4387647162 hasConcept C62520636 @default.
- W4387647162 hasConcept C78519656 @default.
- W4387647162 hasConcept C81363708 @default.
- W4387647162 hasConceptScore W4387647162C119857082 @default.
- W4387647162 hasConceptScore W4387647162C121332964 @default.
- W4387647162 hasConceptScore W4387647162C127413603 @default.
- W4387647162 hasConceptScore W4387647162C131675550 @default.
- W4387647162 hasConceptScore W4387647162C154945302 @default.
- W4387647162 hasConceptScore W4387647162C163258240 @default.
- W4387647162 hasConceptScore W4387647162C22019652 @default.
- W4387647162 hasConceptScore W4387647162C2778449969 @default.