Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387647730> ?p ?o ?g. }
- W4387647730 endingPage "133752" @default.
- W4387647730 startingPage "133752" @default.
- W4387647730 abstract "To provide more accurate and reliable predictions of the shear strength of ultrahigh-performance concrete (UHPC) beams, in this study, the machine learning (ML) approaches were employed to develop the data-driven models, and the ML models were interpreted using the Shapley additive explanations (SHAP) method. It was found that the ensemble models, particularly CatBoost, outperform individual ML models and traditional empirical models. The geometric dimensions and shear span-to-depth ratio were the most influential features for predicting the shear strength of UHPC beams, followed by the parameters of reinforcement and material properties of the UHPC." @default.
- W4387647730 created "2023-10-15" @default.
- W4387647730 creator A5001143598 @default.
- W4387647730 creator A5013509330 @default.
- W4387647730 creator A5018489232 @default.
- W4387647730 creator A5021240812 @default.
- W4387647730 creator A5077487887 @default.
- W4387647730 creator A5087876435 @default.
- W4387647730 date "2023-12-01" @default.
- W4387647730 modified "2023-10-15" @default.
- W4387647730 title "Prediction of shear strength in UHPC beams using machine learning-based models and SHAP interpretation" @default.
- W4387647730 cites W1964950041 @default.
- W4387647730 cites W2033723714 @default.
- W4387647730 cites W2038336124 @default.
- W4387647730 cites W2046760559 @default.
- W4387647730 cites W2058091694 @default.
- W4387647730 cites W2085276284 @default.
- W4387647730 cites W2095208350 @default.
- W4387647730 cites W2160691521 @default.
- W4387647730 cites W2187120995 @default.
- W4387647730 cites W2399714552 @default.
- W4387647730 cites W2482347003 @default.
- W4387647730 cites W2490988077 @default.
- W4387647730 cites W2557161641 @default.
- W4387647730 cites W2608986745 @default.
- W4387647730 cites W2758841675 @default.
- W4387647730 cites W2799374796 @default.
- W4387647730 cites W2801256784 @default.
- W4387647730 cites W2810122964 @default.
- W4387647730 cites W2811188744 @default.
- W4387647730 cites W2816264089 @default.
- W4387647730 cites W2896606584 @default.
- W4387647730 cites W2899661738 @default.
- W4387647730 cites W2900147990 @default.
- W4387647730 cites W2908506566 @default.
- W4387647730 cites W2942789948 @default.
- W4387647730 cites W2955350378 @default.
- W4387647730 cites W2976353133 @default.
- W4387647730 cites W2995439058 @default.
- W4387647730 cites W2997403274 @default.
- W4387647730 cites W3013615534 @default.
- W4387647730 cites W3016630646 @default.
- W4387647730 cites W3036695497 @default.
- W4387647730 cites W3082767211 @default.
- W4387647730 cites W3087786830 @default.
- W4387647730 cites W3113317199 @default.
- W4387647730 cites W3116991085 @default.
- W4387647730 cites W3131046868 @default.
- W4387647730 cites W3133841051 @default.
- W4387647730 cites W3149979006 @default.
- W4387647730 cites W3177103263 @default.
- W4387647730 cites W3185551827 @default.
- W4387647730 cites W3194311761 @default.
- W4387647730 cites W3198148990 @default.
- W4387647730 cites W3202421341 @default.
- W4387647730 cites W3202492532 @default.
- W4387647730 cites W4210504454 @default.
- W4387647730 cites W4213248101 @default.
- W4387647730 cites W4220843136 @default.
- W4387647730 cites W4221041768 @default.
- W4387647730 cites W4224296132 @default.
- W4387647730 cites W4230947053 @default.
- W4387647730 cites W4244190327 @default.
- W4387647730 cites W4283272398 @default.
- W4387647730 cites W4285011387 @default.
- W4387647730 cites W4289527772 @default.
- W4387647730 cites W4291511568 @default.
- W4387647730 cites W4297992143 @default.
- W4387647730 cites W4303575305 @default.
- W4387647730 cites W4303941072 @default.
- W4387647730 cites W4307904231 @default.
- W4387647730 cites W4312068528 @default.
- W4387647730 cites W4318685371 @default.
- W4387647730 cites W4320521992 @default.
- W4387647730 cites W4320525673 @default.
- W4387647730 cites W4327978358 @default.
- W4387647730 cites W4367841043 @default.
- W4387647730 cites W4368353899 @default.
- W4387647730 cites W4376616485 @default.
- W4387647730 cites W4378469094 @default.
- W4387647730 cites W4385540907 @default.
- W4387647730 doi "https://doi.org/10.1016/j.conbuildmat.2023.133752" @default.
- W4387647730 hasPublicationYear "2023" @default.
- W4387647730 type Work @default.
- W4387647730 citedByCount "0" @default.
- W4387647730 crossrefType "journal-article" @default.
- W4387647730 hasAuthorship W4387647730A5001143598 @default.
- W4387647730 hasAuthorship W4387647730A5013509330 @default.
- W4387647730 hasAuthorship W4387647730A5018489232 @default.
- W4387647730 hasAuthorship W4387647730A5021240812 @default.
- W4387647730 hasAuthorship W4387647730A5077487887 @default.
- W4387647730 hasAuthorship W4387647730A5087876435 @default.
- W4387647730 hasConcept C105795698 @default.
- W4387647730 hasConcept C119857082 @default.
- W4387647730 hasConcept C127313418 @default.
- W4387647730 hasConcept C127413603 @default.
- W4387647730 hasConcept C127893833 @default.
- W4387647730 hasConcept C133199616 @default.