Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387651041> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4387651041 abstract "Epilepsy is a prevalent neurological disorder with considerable risks, including physical impairment and irreversible brain damage from seizures. Given these challenges, the urgency for prompt and accurate seizure detection cannot be overstated. Traditionally, experts have relied on manual EEG signal analyses for seizure detection, which is labor-intensive and prone to hu-man error. Recognizing this limitation, the rise of deep learning methods has been heralded as a promising avenue, offering more refined diagnostic precision. On the other hand, the prevailing challenge in many models is their constrained emphasis on specific domains, potentially diminishing their robustness and precision in complex real-world environments. This paper presents a novel model that seamlessly integrates the salient features from the time-frequency domain alongside pivotal statistical attributes derived from EEG signals. This fusion process involves the integration of essential statistics, including the mean, median, and variance, combined with the rich data from compressed time-frequency (CWT) images processed using auto-encoders. This multidimensional feature set provides a robust foundation for subsequent analytic steps. A long short-term memory (LSTM) network, meticulously optimized for the renowned Bonn Epilepsy dataset, was used to enhance the capability of the proposed model. Preliminary evaluations underscore the prowess of the proposed model: remarkable 100% accuracy in most of the binary classifications, impressive performance exceeding 95% for three-class and four-class challenges, and a commendable rate exceeding 93.5% for the five-class classification." @default.
- W4387651041 created "2023-10-16" @default.
- W4387651041 creator A5048418386 @default.
- W4387651041 creator A5071910046 @default.
- W4387651041 creator A5082206251 @default.
- W4387651041 date "2023-10-13" @default.
- W4387651041 modified "2023-10-16" @default.
- W4387651041 title "Robust Epileptic Seizure Detection using LSTM and Feature Fusion from Compressed Time-Frequency EEG Images" @default.
- W4387651041 doi "https://doi.org/10.20944/preprints202310.0860.v1" @default.
- W4387651041 hasPublicationYear "2023" @default.
- W4387651041 type Work @default.
- W4387651041 citedByCount "0" @default.
- W4387651041 crossrefType "posted-content" @default.
- W4387651041 hasAuthorship W4387651041A5048418386 @default.
- W4387651041 hasAuthorship W4387651041A5071910046 @default.
- W4387651041 hasAuthorship W4387651041A5082206251 @default.
- W4387651041 hasBestOaLocation W43876510411 @default.
- W4387651041 hasConcept C104317684 @default.
- W4387651041 hasConcept C108583219 @default.
- W4387651041 hasConcept C119857082 @default.
- W4387651041 hasConcept C138885662 @default.
- W4387651041 hasConcept C153180895 @default.
- W4387651041 hasConcept C154945302 @default.
- W4387651041 hasConcept C15744967 @default.
- W4387651041 hasConcept C169760540 @default.
- W4387651041 hasConcept C185592680 @default.
- W4387651041 hasConcept C2776401178 @default.
- W4387651041 hasConcept C2778186239 @default.
- W4387651041 hasConcept C2779334592 @default.
- W4387651041 hasConcept C41008148 @default.
- W4387651041 hasConcept C41895202 @default.
- W4387651041 hasConcept C522805319 @default.
- W4387651041 hasConcept C55493867 @default.
- W4387651041 hasConcept C63479239 @default.
- W4387651041 hasConceptScore W4387651041C104317684 @default.
- W4387651041 hasConceptScore W4387651041C108583219 @default.
- W4387651041 hasConceptScore W4387651041C119857082 @default.
- W4387651041 hasConceptScore W4387651041C138885662 @default.
- W4387651041 hasConceptScore W4387651041C153180895 @default.
- W4387651041 hasConceptScore W4387651041C154945302 @default.
- W4387651041 hasConceptScore W4387651041C15744967 @default.
- W4387651041 hasConceptScore W4387651041C169760540 @default.
- W4387651041 hasConceptScore W4387651041C185592680 @default.
- W4387651041 hasConceptScore W4387651041C2776401178 @default.
- W4387651041 hasConceptScore W4387651041C2778186239 @default.
- W4387651041 hasConceptScore W4387651041C2779334592 @default.
- W4387651041 hasConceptScore W4387651041C41008148 @default.
- W4387651041 hasConceptScore W4387651041C41895202 @default.
- W4387651041 hasConceptScore W4387651041C522805319 @default.
- W4387651041 hasConceptScore W4387651041C55493867 @default.
- W4387651041 hasConceptScore W4387651041C63479239 @default.
- W4387651041 hasLocation W43876510411 @default.
- W4387651041 hasOpenAccess W4387651041 @default.
- W4387651041 hasPrimaryLocation W43876510411 @default.
- W4387651041 hasRelatedWork W2080101436 @default.
- W4387651041 hasRelatedWork W2166624857 @default.
- W4387651041 hasRelatedWork W2356350882 @default.
- W4387651041 hasRelatedWork W2363907062 @default.
- W4387651041 hasRelatedWork W2393137063 @default.
- W4387651041 hasRelatedWork W2395385109 @default.
- W4387651041 hasRelatedWork W2802335767 @default.
- W4387651041 hasRelatedWork W2899025944 @default.
- W4387651041 hasRelatedWork W2922348724 @default.
- W4387651041 hasRelatedWork W2773633178 @default.
- W4387651041 isParatext "false" @default.
- W4387651041 isRetracted "false" @default.
- W4387651041 workType "article" @default.