Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387651938> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4387651938 abstract "Accurately glacier mapping is crucial for understanding climate change impacts, but existing efforts may be biased due to overlooking spatial autocorrelation during map validation. To address this, we compared several widely used machine learning algorithms as gradient boosting machines (GBM), k-nearest neighbor (KNN) and random forest (RF) with parametric logistic regression (GLM) and an unsupervised remote sensing-based method (NDSI) for mapping Peru's glacier regions in a thoughtful experimental setup. Spatial and non-spatial cross-validation methods were used to evaluate model’s performance and compared with a fully independent test set. Performance differences of up to 18% were found between bias-reduced (spatial) and overoptimistic (non-spatial) cross-validation results when compared to independent test set, emphasizing the need to consider spatial autocorrelation when using machine learning for glacier mapping. K-nearest neighbors (KNN) was the overall best model across regions consistently demonstrating the highest performance followed by logistic regression (LR) and gradient boosting machines (GBM). Our novel validation approach, accounting for spatial characteristics, provides valuable insights for glacier mapping studies and future efforts on glacier retreat monitoring. Incorporating this approach improves the reliability of glacier mapping, guiding future national-level initiatives." @default.
- W4387651938 created "2023-10-16" @default.
- W4387651938 creator A5040436794 @default.
- W4387651938 creator A5080356474 @default.
- W4387651938 creator A5093066095 @default.
- W4387651938 date "2023-10-13" @default.
- W4387651938 modified "2023-10-16" @default.
- W4387651938 title "A Comparative Analysis of Machine Learning Techniques for National Glacier Mapping: Evaluating Performance Through Spatial Cross-Validation in Perú." @default.
- W4387651938 doi "https://doi.org/10.20944/preprints202310.0862.v1" @default.
- W4387651938 hasPublicationYear "2023" @default.
- W4387651938 type Work @default.
- W4387651938 citedByCount "0" @default.
- W4387651938 crossrefType "posted-content" @default.
- W4387651938 hasAuthorship W4387651938A5040436794 @default.
- W4387651938 hasAuthorship W4387651938A5080356474 @default.
- W4387651938 hasAuthorship W4387651938A5093066095 @default.
- W4387651938 hasBestOaLocation W43876519381 @default.
- W4387651938 hasConcept C100834320 @default.
- W4387651938 hasConcept C100970517 @default.
- W4387651938 hasConcept C105795698 @default.
- W4387651938 hasConcept C117251300 @default.
- W4387651938 hasConcept C119857082 @default.
- W4387651938 hasConcept C124101348 @default.
- W4387651938 hasConcept C151956035 @default.
- W4387651938 hasConcept C154945302 @default.
- W4387651938 hasConcept C159620131 @default.
- W4387651938 hasConcept C169258074 @default.
- W4387651938 hasConcept C205649164 @default.
- W4387651938 hasConcept C27181475 @default.
- W4387651938 hasConcept C33923547 @default.
- W4387651938 hasConcept C41008148 @default.
- W4387651938 hasConcept C46686674 @default.
- W4387651938 hasConcept C5297727 @default.
- W4387651938 hasConcept C62649853 @default.
- W4387651938 hasConcept C70153297 @default.
- W4387651938 hasConceptScore W4387651938C100834320 @default.
- W4387651938 hasConceptScore W4387651938C100970517 @default.
- W4387651938 hasConceptScore W4387651938C105795698 @default.
- W4387651938 hasConceptScore W4387651938C117251300 @default.
- W4387651938 hasConceptScore W4387651938C119857082 @default.
- W4387651938 hasConceptScore W4387651938C124101348 @default.
- W4387651938 hasConceptScore W4387651938C151956035 @default.
- W4387651938 hasConceptScore W4387651938C154945302 @default.
- W4387651938 hasConceptScore W4387651938C159620131 @default.
- W4387651938 hasConceptScore W4387651938C169258074 @default.
- W4387651938 hasConceptScore W4387651938C205649164 @default.
- W4387651938 hasConceptScore W4387651938C27181475 @default.
- W4387651938 hasConceptScore W4387651938C33923547 @default.
- W4387651938 hasConceptScore W4387651938C41008148 @default.
- W4387651938 hasConceptScore W4387651938C46686674 @default.
- W4387651938 hasConceptScore W4387651938C5297727 @default.
- W4387651938 hasConceptScore W4387651938C62649853 @default.
- W4387651938 hasConceptScore W4387651938C70153297 @default.
- W4387651938 hasLocation W43876519381 @default.
- W4387651938 hasOpenAccess W4387651938 @default.
- W4387651938 hasPrimaryLocation W43876519381 @default.
- W4387651938 hasRelatedWork W1985505753 @default.
- W4387651938 hasRelatedWork W2766514146 @default.
- W4387651938 hasRelatedWork W2885516856 @default.
- W4387651938 hasRelatedWork W2885778889 @default.
- W4387651938 hasRelatedWork W2967733078 @default.
- W4387651938 hasRelatedWork W3094138326 @default.
- W4387651938 hasRelatedWork W3137904399 @default.
- W4387651938 hasRelatedWork W4289703016 @default.
- W4387651938 hasRelatedWork W4310224730 @default.
- W4387651938 hasRelatedWork W4310492845 @default.
- W4387651938 isParatext "false" @default.
- W4387651938 isRetracted "false" @default.
- W4387651938 workType "article" @default.