Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387653430> ?p ?o ?g. }
- W4387653430 endingPage "4971" @default.
- W4387653430 startingPage "4971" @default.
- W4387653430 abstract "Landslide displacement prediction has garnered significant recognition as a pivotal component in realizing successful early warnings and implementing effective control measures. This task remains challenging as landslide deformation involves not only temporal dependency within time series data but also spatial dependence across various regions within landslides. The present study proposes a landslide spatiotemporal displacement forecasting model by introducing attention-based deep learning algorithms based on spatiotemporal analysis. The Maximal Information Coefficient (MIC) approach is employed to quantify the spatial and temporal correlations within the daily data of Global Navigation Satellite System (GNSS) observations. Based on the quantitative spatiotemporal analysis, the proposed prediction model combines a convolutional neural network (CNN) and long short-term memory (LSTM) network to capture spatial and temporal dependencies individually. Spatial–temporal attention mechanisms are implemented to optimize the model. Additionally, we develop a single-point prediction model using LSTM and a multiple-point prediction model using the CNN-LSTM without an attention mechanism to compare the forecasting capabilities of the attention-based CNN-LSTM model. The Outang landslide in the Three Gorges Reservoir Area (TGRA), characterized by a large and active landslide equipped with an advanced monitoring system, is taken as a studied case. The temporal MIC results shed light on the response times of monitored daily displacement to external factors, showing a lagging duration of between 10 and 50 days. The spatial MIC results indicate mutual influence among different locations within the landslide, particularly in the case of nearby sites experiencing significant deformation. The attention-based CNN-LSTM model demonstrates an impressive predictive performance across six monitoring stations within the Outang landslide area. Notably, it achieves a remarkable maximum coefficient of determination (R2) value of 0.9989, accompanied by minimum values for root mean squared error (RMSE), absolute mean error (MAE), and mean absolute percentage error (MAPE), specifically, 1.18 mm, 0.99 mm, and 0.33%, respectively. The proposed model excels in predicting displacements at all six monitoring points, whereas other models demonstrate strong performance at specific individual stations but lack consistent performance across all stations. This study, involving quantitative deformation characteristics analysis and spatiotemporal displacement prediction, holds promising potential for a more profound understanding of landslide evolution and a significant contribution to reducing landslide risk." @default.
- W4387653430 created "2023-10-16" @default.
- W4387653430 creator A5031577240 @default.
- W4387653430 creator A5049099959 @default.
- W4387653430 creator A5056741076 @default.
- W4387653430 creator A5063362673 @default.
- W4387653430 creator A5091369917 @default.
- W4387653430 creator A5093066453 @default.
- W4387653430 date "2023-10-15" @default.
- W4387653430 modified "2023-10-16" @default.
- W4387653430 title "Updated Global Navigation Satellite System Observations and Attention-Based Convolutional Neural Network–Long Short-Term Memory Network Deep Learning Algorithms to Predict Landslide Spatiotemporal Displacement" @default.
- W4387653430 cites W1982239205 @default.
- W4387653430 cites W2019370496 @default.
- W4387653430 cites W2064675550 @default.
- W4387653430 cites W2074772891 @default.
- W4387653430 cites W2122710056 @default.
- W4387653430 cites W2137611024 @default.
- W4387653430 cites W2191091808 @default.
- W4387653430 cites W2293349767 @default.
- W4387653430 cites W2754129725 @default.
- W4387653430 cites W2769043789 @default.
- W4387653430 cites W2787962265 @default.
- W4387653430 cites W2884585870 @default.
- W4387653430 cites W2898170120 @default.
- W4387653430 cites W2898318094 @default.
- W4387653430 cites W2910183581 @default.
- W4387653430 cites W2950260163 @default.
- W4387653430 cites W2950568498 @default.
- W4387653430 cites W2953003997 @default.
- W4387653430 cites W2954393874 @default.
- W4387653430 cites W2962949934 @default.
- W4387653430 cites W2969685114 @default.
- W4387653430 cites W2972534151 @default.
- W4387653430 cites W2982569617 @default.
- W4387653430 cites W3013874315 @default.
- W4387653430 cites W3021965769 @default.
- W4387653430 cites W3028363395 @default.
- W4387653430 cites W3036022063 @default.
- W4387653430 cites W3044636903 @default.
- W4387653430 cites W3082129780 @default.
- W4387653430 cites W3112315548 @default.
- W4387653430 cites W3129838958 @default.
- W4387653430 cites W3186061382 @default.
- W4387653430 cites W3198612789 @default.
- W4387653430 cites W3210878344 @default.
- W4387653430 cites W4210493428 @default.
- W4387653430 cites W4211177084 @default.
- W4387653430 cites W4213035291 @default.
- W4387653430 cites W4245444932 @default.
- W4387653430 cites W4250534264 @default.
- W4387653430 cites W4283163653 @default.
- W4387653430 cites W4283750094 @default.
- W4387653430 cites W4284671606 @default.
- W4387653430 cites W4286434225 @default.
- W4387653430 cites W4294100819 @default.
- W4387653430 cites W4306692357 @default.
- W4387653430 cites W4315490424 @default.
- W4387653430 cites W4319458932 @default.
- W4387653430 cites W4319594516 @default.
- W4387653430 cites W4323351152 @default.
- W4387653430 cites W4324030620 @default.
- W4387653430 cites W4361215574 @default.
- W4387653430 cites W4377088900 @default.
- W4387653430 cites W4382809718 @default.
- W4387653430 cites W4385606706 @default.
- W4387653430 cites W4386416642 @default.
- W4387653430 doi "https://doi.org/10.3390/rs15204971" @default.
- W4387653430 hasPublicationYear "2023" @default.
- W4387653430 type Work @default.
- W4387653430 citedByCount "0" @default.
- W4387653430 crossrefType "journal-article" @default.
- W4387653430 hasAuthorship W4387653430A5031577240 @default.
- W4387653430 hasAuthorship W4387653430A5049099959 @default.
- W4387653430 hasAuthorship W4387653430A5056741076 @default.
- W4387653430 hasAuthorship W4387653430A5063362673 @default.
- W4387653430 hasAuthorship W4387653430A5091369917 @default.
- W4387653430 hasAuthorship W4387653430A5093066453 @default.
- W4387653430 hasBestOaLocation W43876534301 @default.
- W4387653430 hasConcept C107551265 @default.
- W4387653430 hasConcept C108583219 @default.
- W4387653430 hasConcept C11413529 @default.
- W4387653430 hasConcept C119857082 @default.
- W4387653430 hasConcept C127313418 @default.
- W4387653430 hasConcept C127413603 @default.
- W4387653430 hasConcept C14279187 @default.
- W4387653430 hasConcept C146978453 @default.
- W4387653430 hasConcept C151406439 @default.
- W4387653430 hasConcept C153180895 @default.
- W4387653430 hasConcept C154945302 @default.
- W4387653430 hasConcept C15744967 @default.
- W4387653430 hasConcept C186295008 @default.
- W4387653430 hasConcept C187320778 @default.
- W4387653430 hasConcept C19269812 @default.
- W4387653430 hasConcept C41008148 @default.
- W4387653430 hasConcept C50644808 @default.
- W4387653430 hasConcept C542102704 @default.
- W4387653430 hasConcept C60229501 @default.
- W4387653430 hasConcept C76155785 @default.