Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387653485> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4387653485 endingPage "4259" @default.
- W4387653485 startingPage "4259" @default.
- W4387653485 abstract "With the continuous rise of information technology and social networks, and the explosive growth of network text information, text sentiment analysis technology now plays a vital role in public opinion monitoring and product development analysis on networks. Text data are high-dimensional and complex, and traditional binary classification can only classify sentiment from positive or negative aspects. This does not fully cover the various emotions of users, and, therefore, natural language semantic sentiment analysis has limitations. To solve this deficiency, we propose a new model for analyzing text sentiment that combines deep learning and the bidirectional encoder representation from transformers (BERT) model. We first use an advanced BERT language model to convert the input text into dynamic word vectors; then, we adopt a convolutional neural network (CNN) to obtain the relatively significant partial emotional characteristics of the text. After extraction, we use the bidirectional recurrent neural network (BiGRU) to bidirectionally capture the contextual feature message of the text. Finally, with the MultiHeadAttention mechanism we obtain correlations among the data in different information spaces from different subspaces so that the key information related to emotion in the text can be selectively extracted. The final emotional feature representation obtained is classified using Softmax. Compared with other similar existing methods, our model in this research paper showed a good effect in comparative experiments on an e-commerce text dataset, and the accuracy and F1-score of the classification were significantly improved." @default.
- W4387653485 created "2023-10-16" @default.
- W4387653485 creator A5040713423 @default.
- W4387653485 creator A5057394557 @default.
- W4387653485 creator A5070673623 @default.
- W4387653485 creator A5076731874 @default.
- W4387653485 creator A5076872452 @default.
- W4387653485 date "2023-10-15" @default.
- W4387653485 modified "2023-10-16" @default.
- W4387653485 title "Chinese Multicategory Sentiment of E-Commerce Analysis Based on Deep Learning" @default.
- W4387653485 cites W1832693441 @default.
- W4387653485 cites W2064675550 @default.
- W4387653485 cites W2157331557 @default.
- W4387653485 cites W2211192759 @default.
- W4387653485 cites W2412830130 @default.
- W4387653485 cites W2534640401 @default.
- W4387653485 cites W2605145284 @default.
- W4387653485 cites W2755600986 @default.
- W4387653485 cites W2765369538 @default.
- W4387653485 cites W2792883466 @default.
- W4387653485 cites W2804635269 @default.
- W4387653485 cites W2914767245 @default.
- W4387653485 cites W2963974889 @default.
- W4387653485 cites W2971088377 @default.
- W4387653485 cites W3000739907 @default.
- W4387653485 cites W3001517657 @default.
- W4387653485 cites W3003580126 @default.
- W4387653485 cites W3004897224 @default.
- W4387653485 cites W3011384704 @default.
- W4387653485 cites W3081987387 @default.
- W4387653485 cites W3121186385 @default.
- W4387653485 cites W3135361293 @default.
- W4387653485 cites W4210493422 @default.
- W4387653485 cites W4321497407 @default.
- W4387653485 cites W4383503665 @default.
- W4387653485 cites W4386038345 @default.
- W4387653485 doi "https://doi.org/10.3390/electronics12204259" @default.
- W4387653485 hasPublicationYear "2023" @default.
- W4387653485 type Work @default.
- W4387653485 citedByCount "0" @default.
- W4387653485 crossrefType "journal-article" @default.
- W4387653485 hasAuthorship W4387653485A5040713423 @default.
- W4387653485 hasAuthorship W4387653485A5057394557 @default.
- W4387653485 hasAuthorship W4387653485A5070673623 @default.
- W4387653485 hasAuthorship W4387653485A5076731874 @default.
- W4387653485 hasAuthorship W4387653485A5076872452 @default.
- W4387653485 hasBestOaLocation W43876534851 @default.
- W4387653485 hasConcept C108583219 @default.
- W4387653485 hasConcept C111919701 @default.
- W4387653485 hasConcept C118505674 @default.
- W4387653485 hasConcept C151375590 @default.
- W4387653485 hasConcept C154945302 @default.
- W4387653485 hasConcept C188441871 @default.
- W4387653485 hasConcept C204321447 @default.
- W4387653485 hasConcept C41008148 @default.
- W4387653485 hasConcept C59404180 @default.
- W4387653485 hasConcept C66402592 @default.
- W4387653485 hasConcept C66945725 @default.
- W4387653485 hasConcept C71472368 @default.
- W4387653485 hasConcept C81363708 @default.
- W4387653485 hasConceptScore W4387653485C108583219 @default.
- W4387653485 hasConceptScore W4387653485C111919701 @default.
- W4387653485 hasConceptScore W4387653485C118505674 @default.
- W4387653485 hasConceptScore W4387653485C151375590 @default.
- W4387653485 hasConceptScore W4387653485C154945302 @default.
- W4387653485 hasConceptScore W4387653485C188441871 @default.
- W4387653485 hasConceptScore W4387653485C204321447 @default.
- W4387653485 hasConceptScore W4387653485C41008148 @default.
- W4387653485 hasConceptScore W4387653485C59404180 @default.
- W4387653485 hasConceptScore W4387653485C66402592 @default.
- W4387653485 hasConceptScore W4387653485C66945725 @default.
- W4387653485 hasConceptScore W4387653485C71472368 @default.
- W4387653485 hasConceptScore W4387653485C81363708 @default.
- W4387653485 hasIssue "20" @default.
- W4387653485 hasLocation W43876534851 @default.
- W4387653485 hasOpenAccess W4387653485 @default.
- W4387653485 hasPrimaryLocation W43876534851 @default.
- W4387653485 hasRelatedWork W1625494842 @default.
- W4387653485 hasRelatedWork W2011580521 @default.
- W4387653485 hasRelatedWork W2152349655 @default.
- W4387653485 hasRelatedWork W2163264304 @default.
- W4387653485 hasRelatedWork W2214611599 @default.
- W4387653485 hasRelatedWork W2372183225 @default.
- W4387653485 hasRelatedWork W3047363187 @default.
- W4387653485 hasRelatedWork W3119773509 @default.
- W4387653485 hasRelatedWork W3177373753 @default.
- W4387653485 hasRelatedWork W4312055747 @default.
- W4387653485 hasVolume "12" @default.
- W4387653485 isParatext "false" @default.
- W4387653485 isRetracted "false" @default.
- W4387653485 workType "article" @default.