Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387653636> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4387653636 endingPage "4261" @default.
- W4387653636 startingPage "4261" @default.
- W4387653636 abstract "Email phishing is a widespread cyber threat that can result in the theft of sensitive information and financial loss. It uses malicious emails to trick recipients into providing sensitive information or transferring money, often by disguising themselves as legitimate organizations or individuals. As technology advances and attackers become more sophisticated, the problem of email phishing becomes increasingly challenging to detect and prevent. In this research paper, the use of deep learning techniques, including convolutional neural networks (CNNs), long short-term memory (LSTM) networks, recurrent neural networks (RNNs), and bidirectional encoder representations from transformers (BERT), are explored for detecting email phishing attacks. A dataset of phishing and benign emails was utilized, and a set of relevant features was extracted using natural language processing (NLP) techniques. The proposed deep learning model was trained and tested using the dataset, and it was found that it can achieve high accuracy in detecting email phishing compared to other state-of-the-art research, where the best performance was seen when using BERT and LSTM with an accuracy of 99.61%. The results demonstrate the potential of deep learning for improving email phishing detection and protecting against this pervasive threat." @default.
- W4387653636 created "2023-10-16" @default.
- W4387653636 creator A5076452112 @default.
- W4387653636 creator A5093066488 @default.
- W4387653636 date "2023-10-15" @default.
- W4387653636 modified "2023-10-16" @default.
- W4387653636 title "Phishing Email Detection Model Using Deep Learning" @default.
- W4387653636 cites W1966741850 @default.
- W4387653636 cites W2793412634 @default.
- W4387653636 cites W2816743865 @default.
- W4387653636 cites W2919115771 @default.
- W4387653636 cites W2944851425 @default.
- W4387653636 cites W2981840673 @default.
- W4387653636 cites W2982605177 @default.
- W4387653636 cites W2999300566 @default.
- W4387653636 cites W3044766287 @default.
- W4387653636 cites W3092531413 @default.
- W4387653636 cites W3113116237 @default.
- W4387653636 cites W3117590853 @default.
- W4387653636 cites W3126895599 @default.
- W4387653636 cites W3184796286 @default.
- W4387653636 cites W3207932232 @default.
- W4387653636 cites W3211144245 @default.
- W4387653636 cites W4206487993 @default.
- W4387653636 cites W4213081600 @default.
- W4387653636 cites W4289824402 @default.
- W4387653636 cites W4321062052 @default.
- W4387653636 cites W4366826981 @default.
- W4387653636 cites W4367598850 @default.
- W4387653636 cites W4383065673 @default.
- W4387653636 doi "https://doi.org/10.3390/electronics12204261" @default.
- W4387653636 hasPublicationYear "2023" @default.
- W4387653636 type Work @default.
- W4387653636 citedByCount "0" @default.
- W4387653636 crossrefType "journal-article" @default.
- W4387653636 hasAuthorship W4387653636A5076452112 @default.
- W4387653636 hasAuthorship W4387653636A5093066488 @default.
- W4387653636 hasBestOaLocation W43876536361 @default.
- W4387653636 hasConcept C108583219 @default.
- W4387653636 hasConcept C110875604 @default.
- W4387653636 hasConcept C111919701 @default.
- W4387653636 hasConcept C118505674 @default.
- W4387653636 hasConcept C119857082 @default.
- W4387653636 hasConcept C136764020 @default.
- W4387653636 hasConcept C147168706 @default.
- W4387653636 hasConcept C154945302 @default.
- W4387653636 hasConcept C38652104 @default.
- W4387653636 hasConcept C41008148 @default.
- W4387653636 hasConcept C50644808 @default.
- W4387653636 hasConcept C81363708 @default.
- W4387653636 hasConcept C83860907 @default.
- W4387653636 hasConceptScore W4387653636C108583219 @default.
- W4387653636 hasConceptScore W4387653636C110875604 @default.
- W4387653636 hasConceptScore W4387653636C111919701 @default.
- W4387653636 hasConceptScore W4387653636C118505674 @default.
- W4387653636 hasConceptScore W4387653636C119857082 @default.
- W4387653636 hasConceptScore W4387653636C136764020 @default.
- W4387653636 hasConceptScore W4387653636C147168706 @default.
- W4387653636 hasConceptScore W4387653636C154945302 @default.
- W4387653636 hasConceptScore W4387653636C38652104 @default.
- W4387653636 hasConceptScore W4387653636C41008148 @default.
- W4387653636 hasConceptScore W4387653636C50644808 @default.
- W4387653636 hasConceptScore W4387653636C81363708 @default.
- W4387653636 hasConceptScore W4387653636C83860907 @default.
- W4387653636 hasIssue "20" @default.
- W4387653636 hasLocation W43876536361 @default.
- W4387653636 hasOpenAccess W4387653636 @default.
- W4387653636 hasPrimaryLocation W43876536361 @default.
- W4387653636 hasRelatedWork W2149202530 @default.
- W4387653636 hasRelatedWork W2482950156 @default.
- W4387653636 hasRelatedWork W2921723332 @default.
- W4387653636 hasRelatedWork W3029198973 @default.
- W4387653636 hasRelatedWork W3042334625 @default.
- W4387653636 hasRelatedWork W3133861977 @default.
- W4387653636 hasRelatedWork W3167935049 @default.
- W4387653636 hasRelatedWork W3193565141 @default.
- W4387653636 hasRelatedWork W4226493464 @default.
- W4387653636 hasRelatedWork W4312417841 @default.
- W4387653636 hasVolume "12" @default.
- W4387653636 isParatext "false" @default.
- W4387653636 isRetracted "false" @default.
- W4387653636 workType "article" @default.