Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387654555> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4387654555 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> The newly developed planar differential mobility analyzer (DMA) serving as particle sizer can achieve higher transmission and selection precision at ambient pressure compared with conventional cylindrical DMA, and show potentials on coupling with atmospheric pressure interface mass spectrometer (API-MS) for cluster detection with an additional ion mobility dimension. In this study, we assessed the performance of a commercial planar DMA (DMA P5) integrated with the home-build recirculation system. The sizing range of the system in this work is 0–3.9 nm, although larger sizes can be measured with a sheath gas flow restrictor. The resolving power under different recirculation setups (suction mode and counter flow mode) and different sheath flow rates was evaluated using electrosprayed tetra-alkyl ammonium salts (TMAI, TBAI, THAB and TDAB). The maximum resolving power of THA<sup>+</sup> under suction and counterflow mode are 61.6 and 84.6, respectively. The sizing resolution of DMA P5 is 7–16 times higher than conventional cylindrical DMAs. The resolving power showed approximately linear correlation with <img src= alt= width=47 height=22 /> under counterflow mode, while the resolving power of THA<sup>+</sup> under suction mode stopped linearly increase with <img src= alt= width=47 height=22 /> when the V<sub>DMA</sub> was above 3554.3V and enter a plateau due to the interference of sample flow on the laminarity of sheath flow. The transmission efficiency of DMA P5 can reach 54.3 %, about one factor of magnitude higher than the commercial DMAs. The mobility spectrum of different electrosprayed tetra-alkyl ammonium salts and the mass to charge ratio-mobility 2D spectrum of sulfuric acid clusters was also characterized with the DMA P5 (-MS) system." @default.
- W4387654555 created "2023-10-16" @default.
- W4387654555 creator A5010270772 @default.
- W4387654555 date "2023-10-15" @default.
- W4387654555 modified "2023-10-16" @default.
- W4387654555 title "Reply on RC2" @default.
- W4387654555 doi "https://doi.org/10.5194/amt-2023-147-ac1" @default.
- W4387654555 hasPublicationYear "2023" @default.
- W4387654555 type Work @default.
- W4387654555 citedByCount "0" @default.
- W4387654555 crossrefType "peer-review" @default.
- W4387654555 hasAuthorship W4387654555A5010270772 @default.
- W4387654555 hasBestOaLocation W43876545551 @default.
- W4387654555 hasConcept C113196181 @default.
- W4387654555 hasConcept C120665830 @default.
- W4387654555 hasConcept C121332964 @default.
- W4387654555 hasConcept C121684516 @default.
- W4387654555 hasConcept C134786449 @default.
- W4387654555 hasConcept C158007255 @default.
- W4387654555 hasConcept C178790620 @default.
- W4387654555 hasConcept C185592680 @default.
- W4387654555 hasConcept C192562407 @default.
- W4387654555 hasConcept C2777148325 @default.
- W4387654555 hasConcept C2777767291 @default.
- W4387654555 hasConcept C2779345167 @default.
- W4387654555 hasConcept C41008148 @default.
- W4387654555 hasConcept C43617362 @default.
- W4387654555 hasConceptScore W4387654555C113196181 @default.
- W4387654555 hasConceptScore W4387654555C120665830 @default.
- W4387654555 hasConceptScore W4387654555C121332964 @default.
- W4387654555 hasConceptScore W4387654555C121684516 @default.
- W4387654555 hasConceptScore W4387654555C134786449 @default.
- W4387654555 hasConceptScore W4387654555C158007255 @default.
- W4387654555 hasConceptScore W4387654555C178790620 @default.
- W4387654555 hasConceptScore W4387654555C185592680 @default.
- W4387654555 hasConceptScore W4387654555C192562407 @default.
- W4387654555 hasConceptScore W4387654555C2777148325 @default.
- W4387654555 hasConceptScore W4387654555C2777767291 @default.
- W4387654555 hasConceptScore W4387654555C2779345167 @default.
- W4387654555 hasConceptScore W4387654555C41008148 @default.
- W4387654555 hasConceptScore W4387654555C43617362 @default.
- W4387654555 hasLocation W43876545551 @default.
- W4387654555 hasOpenAccess W4387654555 @default.
- W4387654555 hasPrimaryLocation W43876545551 @default.
- W4387654555 hasRelatedWork W1983492704 @default.
- W4387654555 hasRelatedWork W1999423501 @default.
- W4387654555 hasRelatedWork W2019257956 @default.
- W4387654555 hasRelatedWork W2156125566 @default.
- W4387654555 hasRelatedWork W2176732874 @default.
- W4387654555 hasRelatedWork W2512196978 @default.
- W4387654555 hasRelatedWork W2605756734 @default.
- W4387654555 hasRelatedWork W2993091365 @default.
- W4387654555 hasRelatedWork W4214915078 @default.
- W4387654555 hasRelatedWork W4214944457 @default.
- W4387654555 isParatext "false" @default.
- W4387654555 isRetracted "false" @default.
- W4387654555 workType "peer-review" @default.