Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387654902> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4387654902 abstract "Computed Tomography (CT) offers great visualization of the intricate internal body structures. To protect a patient from the potential radiation-related health risks, the acquisition of CT images should adhere to the “as low as reasonably allowed” (ALARA) standard. However, the acquired Low-dose CT (LDCT) images are inadvertently corrupted by artifacts and noise during the processes of acquisition, storage, and transmission, degrading the visual quality of the image and also causing the loss of image features and relevant information. Most recently, generative adversarial network (GAN) models based on deep learning (DL) have demonstrated ground-breaking performance to minimize image noise while maintaining high image quality. These models’ ability to adapt to uncertain noise distributions and representation-learning ability makes them highly desirable for the denoising of CT images. The state-of-the-art GANs used for LDCT image denoising have been comprehensively reviewed in this research paper. The aim of this paper is to highlight the potential of DL-based GAN for CT dose optimization and present future scope of research in the domain of LDCT image denoising." @default.
- W4387654902 created "2023-10-16" @default.
- W4387654902 creator A5001950588 @default.
- W4387654902 creator A5045102998 @default.
- W4387654902 creator A5062881674 @default.
- W4387654902 date "2023-10-14" @default.
- W4387654902 modified "2023-10-16" @default.
- W4387654902 title "A Comprehensive Review of GAN-Based Denoising Models for Low-Dose Computed Tomography Images" @default.
- W4387654902 doi "https://doi.org/10.1142/s0219467825500305" @default.
- W4387654902 hasPublicationYear "2023" @default.
- W4387654902 type Work @default.
- W4387654902 citedByCount "0" @default.
- W4387654902 crossrefType "journal-article" @default.
- W4387654902 hasAuthorship W4387654902A5001950588 @default.
- W4387654902 hasAuthorship W4387654902A5045102998 @default.
- W4387654902 hasAuthorship W4387654902A5062881674 @default.
- W4387654902 hasConcept C108583219 @default.
- W4387654902 hasConcept C115961682 @default.
- W4387654902 hasConcept C126838900 @default.
- W4387654902 hasConcept C154945302 @default.
- W4387654902 hasConcept C163294075 @default.
- W4387654902 hasConcept C31972630 @default.
- W4387654902 hasConcept C36464697 @default.
- W4387654902 hasConcept C41008148 @default.
- W4387654902 hasConcept C544519230 @default.
- W4387654902 hasConcept C55020928 @default.
- W4387654902 hasConcept C71924100 @default.
- W4387654902 hasConcept C99498987 @default.
- W4387654902 hasConceptScore W4387654902C108583219 @default.
- W4387654902 hasConceptScore W4387654902C115961682 @default.
- W4387654902 hasConceptScore W4387654902C126838900 @default.
- W4387654902 hasConceptScore W4387654902C154945302 @default.
- W4387654902 hasConceptScore W4387654902C163294075 @default.
- W4387654902 hasConceptScore W4387654902C31972630 @default.
- W4387654902 hasConceptScore W4387654902C36464697 @default.
- W4387654902 hasConceptScore W4387654902C41008148 @default.
- W4387654902 hasConceptScore W4387654902C544519230 @default.
- W4387654902 hasConceptScore W4387654902C55020928 @default.
- W4387654902 hasConceptScore W4387654902C71924100 @default.
- W4387654902 hasConceptScore W4387654902C99498987 @default.
- W4387654902 hasLocation W43876549021 @default.
- W4387654902 hasOpenAccess W4387654902 @default.
- W4387654902 hasPrimaryLocation W43876549021 @default.
- W4387654902 hasRelatedWork W2068608913 @default.
- W4387654902 hasRelatedWork W2071701083 @default.
- W4387654902 hasRelatedWork W2077542787 @default.
- W4387654902 hasRelatedWork W2141033859 @default.
- W4387654902 hasRelatedWork W2156434174 @default.
- W4387654902 hasRelatedWork W2383687187 @default.
- W4387654902 hasRelatedWork W2387910809 @default.
- W4387654902 hasRelatedWork W3124914020 @default.
- W4387654902 hasRelatedWork W4375867731 @default.
- W4387654902 hasRelatedWork W2121496884 @default.
- W4387654902 isParatext "false" @default.
- W4387654902 isRetracted "false" @default.
- W4387654902 workType "article" @default.