Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387663896> ?p ?o ?g. }
- W4387663896 endingPage "0" @default.
- W4387663896 startingPage "0" @default.
- W4387663896 abstract "Image demosaicing and denoising play a critical role in the raw imaging pipeline. These processes have often been treated as independent, without considering their interactions. Indeed, most classic denoising methods handle noisy RGB images, not raw images. Conversely, most demosaicing methods address the demosaicing of noise free images. The real problem is to jointly denoise and demosaic noisy raw images. But the question of how to proceed is still not clarified. In this paper, we carry out extensive experiments and a mathematical analysis to tackle this problem by low complexity algorithms. Indeed, both problems have only been addressed jointly by end-to-end heavy-weight convolutional neural networks (CNNs), which are currently incompatible with low-power portable imaging devices and remain by nature domain (or device) dependent. Our study leads us to conclude that, with moderate noise, demosaicing should be applied first, followed by denoising. This requires a simple adaptation of classic denoising algorithms to demosaiced noise, which we justify and specify. Although our main conclusion is 'demosaic first, then denoise,' we also discover that for high noise, there is a moderate PSNR gain by a more complex strategy: partial CFA denoising followed by demosaicing and by a second denoising on the RGB image. These surprising results are obtained by a black-box optimization of the pipeline, which could be applied to any other pipeline. We validate our results on simulated and real noisy CFA images obtained from several benchmarks." @default.
- W4387663896 created "2023-10-17" @default.
- W4387663896 creator A5037365971 @default.
- W4387663896 creator A5056596552 @default.
- W4387663896 creator A5069374541 @default.
- W4387663896 creator A5073617460 @default.
- W4387663896 date "2023-01-01" @default.
- W4387663896 modified "2023-10-17" @default.
- W4387663896 title "How to best combine demosaicing and denoising?" @default.
- W4387663896 cites W1547941176 @default.
- W4387663896 cites W1912194039 @default.
- W4387663896 cites W1915360731 @default.
- W4387663896 cites W1969210895 @default.
- W4387663896 cites W1997972711 @default.
- W4387663896 cites W1999046526 @default.
- W4387663896 cites W2009912699 @default.
- W4387663896 cites W2010560725 @default.
- W4387663896 cites W2021262032 @default.
- W4387663896 cites W2022007237 @default.
- W4387663896 cites W2028140315 @default.
- W4387663896 cites W2046079682 @default.
- W4387663896 cites W2047710600 @default.
- W4387663896 cites W2053779250 @default.
- W4387663896 cites W2056370875 @default.
- W4387663896 cites W2058005980 @default.
- W4387663896 cites W2061380709 @default.
- W4387663896 cites W2068902206 @default.
- W4387663896 cites W2069051299 @default.
- W4387663896 cites W2103559027 @default.
- W4387663896 cites W2113945798 @default.
- W4387663896 cites W2124548376 @default.
- W4387663896 cites W2125714665 @default.
- W4387663896 cites W2129381747 @default.
- W4387663896 cites W2136396015 @default.
- W4387663896 cites W2152178471 @default.
- W4387663896 cites W2153334393 @default.
- W4387663896 cites W2153377815 @default.
- W4387663896 cites W2155311268 @default.
- W4387663896 cites W2155838693 @default.
- W4387663896 cites W2172275395 @default.
- W4387663896 cites W2219841864 @default.
- W4387663896 cites W2263237637 @default.
- W4387663896 cites W2295952922 @default.
- W4387663896 cites W2322157664 @default.
- W4387663896 cites W2335403142 @default.
- W4387663896 cites W2410797836 @default.
- W4387663896 cites W2508457857 @default.
- W4387663896 cites W2536599074 @default.
- W4387663896 cites W2556872594 @default.
- W4387663896 cites W2613731869 @default.
- W4387663896 cites W2619593310 @default.
- W4387663896 cites W2749075270 @default.
- W4387663896 cites W2773272881 @default.
- W4387663896 cites W2799192307 @default.
- W4387663896 cites W2921595853 @default.
- W4387663896 cites W2962767526 @default.
- W4387663896 cites W2963725279 @default.
- W4387663896 cites W2964024518 @default.
- W4387663896 cites W2971711696 @default.
- W4387663896 cites W2986186783 @default.
- W4387663896 cites W2991085799 @default.
- W4387663896 cites W3004947139 @default.
- W4387663896 cites W3034504121 @default.
- W4387663896 cites W3035373645 @default.
- W4387663896 cites W3035496815 @default.
- W4387663896 cites W3035635957 @default.
- W4387663896 cites W3080848135 @default.
- W4387663896 cites W3093261331 @default.
- W4387663896 cites W3104725225 @default.
- W4387663896 cites W3123014377 @default.
- W4387663896 cites W3176469911 @default.
- W4387663896 cites W3184720854 @default.
- W4387663896 cites W3190470001 @default.
- W4387663896 cites W3190877284 @default.
- W4387663896 cites W4285220742 @default.
- W4387663896 cites W4302307396 @default.
- W4387663896 cites W4378648416 @default.
- W4387663896 cites W2322721050 @default.
- W4387663896 doi "https://doi.org/10.3934/ipi.2023044" @default.
- W4387663896 hasPublicationYear "2023" @default.
- W4387663896 type Work @default.
- W4387663896 citedByCount "0" @default.
- W4387663896 crossrefType "journal-article" @default.
- W4387663896 hasAuthorship W4387663896A5037365971 @default.
- W4387663896 hasAuthorship W4387663896A5056596552 @default.
- W4387663896 hasAuthorship W4387663896A5069374541 @default.
- W4387663896 hasAuthorship W4387663896A5073617460 @default.
- W4387663896 hasBestOaLocation W43876638961 @default.
- W4387663896 hasConcept C115961682 @default.
- W4387663896 hasConcept C142616399 @default.
- W4387663896 hasConcept C154945302 @default.
- W4387663896 hasConcept C163294075 @default.
- W4387663896 hasConcept C199360897 @default.
- W4387663896 hasConcept C202474056 @default.
- W4387663896 hasConcept C23431618 @default.
- W4387663896 hasConcept C27624317 @default.
- W4387663896 hasConcept C30814859 @default.
- W4387663896 hasConcept C31972630 @default.