Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387666014> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4387666014 endingPage "12" @default.
- W4387666014 startingPage "1" @default.
- W4387666014 abstract "Histopathological images are very effective for investigating the status of various biological structures and diagnosing diseases like cancer. In addition, digital histopathology increases diagnosis precision and provides better image quality and more detail for the pathologist with multiple viewing options and team annotations. As a result of the benefits above, faster treatment is available, increasing therapy success rates and patient recovery and survival chances. However, the present manual examination of these images is tedious and time-consuming for pathologists. Therefore, reliable automated techniques are needed to effectively classify normal and malignant cancer images. This paper applied a deep learning approach, namely, EfficientNet and its variants from B0 to B7. We used different image resolutions for each model, from 224 × 224 pixels to 600 × 600 pixels. We also applied transfer learning and parameter tuning techniques to improve the results and overcome the overfitting problem. We collected the dataset from the Lung and Colon Cancer Histopathological Image LC25000 image dataset. The dataset acquisition consists of 25,000 histopathology images of five classes (lung adenocarcinoma, lung squamous cell carcinoma, benign lung tissue, colon adenocarcinoma, and colon benign tissue). Then, we performed preprocessing on the dataset to remove the noisy images and bring them into a standard format. The model’s performance was evaluated in terms of classification accuracy and loss. We have achieved good accuracy results for all variants; however, the results of EfficientNetB2 stand excellent, with an accuracy of 97% for 260 × 260 pixels resolution images." @default.
- W4387666014 created "2023-10-17" @default.
- W4387666014 creator A5029628910 @default.
- W4387666014 creator A5032703069 @default.
- W4387666014 creator A5077398703 @default.
- W4387666014 creator A5083460237 @default.
- W4387666014 creator A5087449505 @default.
- W4387666014 creator A5088232762 @default.
- W4387666014 creator A5091859381 @default.
- W4387666014 date "2023-10-16" @default.
- W4387666014 modified "2023-10-17" @default.
- W4387666014 title "Lung Cancer Classification in Histopathology Images Using Multiresolution Efficient Nets" @default.
- W4387666014 cites W2143701388 @default.
- W4387666014 cites W2200290088 @default.
- W4387666014 cites W2312404985 @default.
- W4387666014 cites W2323929895 @default.
- W4387666014 cites W2514628397 @default.
- W4387666014 cites W2517282755 @default.
- W4387666014 cites W2618530766 @default.
- W4387666014 cites W2742679468 @default.
- W4387666014 cites W2798869704 @default.
- W4387666014 cites W2889646458 @default.
- W4387666014 cites W2913292019 @default.
- W4387666014 cites W2922268597 @default.
- W4387666014 cites W2964137095 @default.
- W4387666014 cites W2964345665 @default.
- W4387666014 cites W2989743390 @default.
- W4387666014 cites W3004016611 @default.
- W4387666014 cites W3011337925 @default.
- W4387666014 cites W3011885901 @default.
- W4387666014 cites W3028169869 @default.
- W4387666014 cites W3080406710 @default.
- W4387666014 cites W3114453490 @default.
- W4387666014 cites W755307704 @default.
- W4387666014 doi "https://doi.org/10.1155/2023/7282944" @default.
- W4387666014 hasPublicationYear "2023" @default.
- W4387666014 type Work @default.
- W4387666014 citedByCount "0" @default.
- W4387666014 crossrefType "journal-article" @default.
- W4387666014 hasAuthorship W4387666014A5029628910 @default.
- W4387666014 hasAuthorship W4387666014A5032703069 @default.
- W4387666014 hasAuthorship W4387666014A5077398703 @default.
- W4387666014 hasAuthorship W4387666014A5083460237 @default.
- W4387666014 hasAuthorship W4387666014A5087449505 @default.
- W4387666014 hasAuthorship W4387666014A5088232762 @default.
- W4387666014 hasAuthorship W4387666014A5091859381 @default.
- W4387666014 hasBestOaLocation W43876660141 @default.
- W4387666014 hasConcept C121608353 @default.
- W4387666014 hasConcept C126322002 @default.
- W4387666014 hasConcept C142724271 @default.
- W4387666014 hasConcept C153180895 @default.
- W4387666014 hasConcept C154945302 @default.
- W4387666014 hasConcept C160633673 @default.
- W4387666014 hasConcept C22019652 @default.
- W4387666014 hasConcept C2776256026 @default.
- W4387666014 hasConcept C2777522853 @default.
- W4387666014 hasConcept C2781182431 @default.
- W4387666014 hasConcept C34736171 @default.
- W4387666014 hasConcept C41008148 @default.
- W4387666014 hasConcept C50644808 @default.
- W4387666014 hasConcept C544855455 @default.
- W4387666014 hasConcept C71924100 @default.
- W4387666014 hasConceptScore W4387666014C121608353 @default.
- W4387666014 hasConceptScore W4387666014C126322002 @default.
- W4387666014 hasConceptScore W4387666014C142724271 @default.
- W4387666014 hasConceptScore W4387666014C153180895 @default.
- W4387666014 hasConceptScore W4387666014C154945302 @default.
- W4387666014 hasConceptScore W4387666014C160633673 @default.
- W4387666014 hasConceptScore W4387666014C22019652 @default.
- W4387666014 hasConceptScore W4387666014C2776256026 @default.
- W4387666014 hasConceptScore W4387666014C2777522853 @default.
- W4387666014 hasConceptScore W4387666014C2781182431 @default.
- W4387666014 hasConceptScore W4387666014C34736171 @default.
- W4387666014 hasConceptScore W4387666014C41008148 @default.
- W4387666014 hasConceptScore W4387666014C50644808 @default.
- W4387666014 hasConceptScore W4387666014C544855455 @default.
- W4387666014 hasConceptScore W4387666014C71924100 @default.
- W4387666014 hasFunder F4320322484 @default.
- W4387666014 hasLocation W43876660141 @default.
- W4387666014 hasOpenAccess W4387666014 @default.
- W4387666014 hasPrimaryLocation W43876660141 @default.
- W4387666014 hasRelatedWork W1574414179 @default.
- W4387666014 hasRelatedWork W2922073769 @default.
- W4387666014 hasRelatedWork W2991587282 @default.
- W4387666014 hasRelatedWork W3008919350 @default.
- W4387666014 hasRelatedWork W3030944657 @default.
- W4387666014 hasRelatedWork W4281702477 @default.
- W4387666014 hasRelatedWork W4288018740 @default.
- W4387666014 hasRelatedWork W4297676672 @default.
- W4387666014 hasRelatedWork W4362597605 @default.
- W4387666014 hasRelatedWork W4378510483 @default.
- W4387666014 hasVolume "2023" @default.
- W4387666014 isParatext "false" @default.
- W4387666014 isRetracted "false" @default.
- W4387666014 workType "article" @default.