Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387666456> ?p ?o ?g. }
- W4387666456 endingPage "e0293032" @default.
- W4387666456 startingPage "e0293032" @default.
- W4387666456 abstract "Analyzing the dynamics of information diffusion cascades and accurately predicting their behavior holds significant importance in various applications. In this paper, we concentrate specifically on a recently introduced contrastive cascade graph learning framework, for the task of predicting cascade popularity. This framework follows a pre-training and fine-tuning paradigm to address cascade prediction tasks. In a previous study, the transferability of pre-trained models within the contrastive cascade graph learning framework was examined solely between two social media datasets. However, in our present study, we comprehensively evaluate the transferability of pre-trained models across 13 real datasets and six synthetic datasets. We construct several pre-trained models using real cascades and synthetic cascades generated by the independent cascade model and the Profile model. Then, we fine-tune these pre-trained models on real cascade datasets and evaluate their prediction accuracy based on the mean squared logarithmic error. The main findings derived from our results are as follows. (1) The pre-trained models exhibit transferability across diverse types of real datasets in different domains, encompassing different languages, social media platforms, and diffusion time scales. (2) Synthetic cascade data prove effective for pre-training purposes. The pre-trained models constructed with synthetic cascade data demonstrate comparable effectiveness to those constructed using real data. (3) Synthetic cascade data prove beneficial for fine-tuning the contrastive cascade graph learning models and training other state-of-the-art popularity prediction models. Models trained using a combination of real and synthetic cascades yield significantly lower mean squared logarithmic error compared to those trained solely on real cascades. Our findings affirm the effectiveness of synthetic cascade data in enhancing the accuracy of cascade popularity prediction." @default.
- W4387666456 created "2023-10-17" @default.
- W4387666456 creator A5015126836 @default.
- W4387666456 creator A5019172487 @default.
- W4387666456 creator A5083456016 @default.
- W4387666456 creator A5093069271 @default.
- W4387666456 date "2023-10-16" @default.
- W4387666456 modified "2023-10-18" @default.
- W4387666456 title "On the effectiveness of a contrastive cascade graph learning framework: The power of synthetic cascade data" @default.
- W4387666456 cites W1973956316 @default.
- W4387666456 cites W1992537918 @default.
- W4387666456 cites W1994473607 @default.
- W4387666456 cites W2000139610 @default.
- W4387666456 cites W2008620264 @default.
- W4387666456 cites W2022322548 @default.
- W4387666456 cites W2023655578 @default.
- W4387666456 cites W2042123098 @default.
- W4387666456 cites W2052817812 @default.
- W4387666456 cites W2061820396 @default.
- W4387666456 cites W2078667779 @default.
- W4387666456 cites W2108858998 @default.
- W4387666456 cites W2112090702 @default.
- W4387666456 cites W2121973264 @default.
- W4387666456 cites W2125283600 @default.
- W4387666456 cites W2125322148 @default.
- W4387666456 cites W2143551222 @default.
- W4387666456 cites W2163060600 @default.
- W4387666456 cites W2164273822 @default.
- W4387666456 cites W2201681176 @default.
- W4387666456 cites W2767220239 @default.
- W4387666456 cites W2769765383 @default.
- W4387666456 cites W2784974433 @default.
- W4387666456 cites W2790166049 @default.
- W4387666456 cites W2809583854 @default.
- W4387666456 cites W2902425696 @default.
- W4387666456 cites W2908404712 @default.
- W4387666456 cites W2936792392 @default.
- W4387666456 cites W2952395191 @default.
- W4387666456 cites W2962773920 @default.
- W4387666456 cites W3001111845 @default.
- W4387666456 cites W3002293096 @default.
- W4387666456 cites W3028571922 @default.
- W4387666456 cites W3035739162 @default.
- W4387666456 cites W3047401381 @default.
- W4387666456 cites W3098684887 @default.
- W4387666456 cites W3104010597 @default.
- W4387666456 cites W3105291472 @default.
- W4387666456 cites W3116602816 @default.
- W4387666456 cites W3125952634 @default.
- W4387666456 cites W4200534804 @default.
- W4387666456 doi "https://doi.org/10.1371/journal.pone.0293032" @default.
- W4387666456 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37844089" @default.
- W4387666456 hasPublicationYear "2023" @default.
- W4387666456 type Work @default.
- W4387666456 citedByCount "0" @default.
- W4387666456 crossrefType "journal-article" @default.
- W4387666456 hasAuthorship W4387666456A5015126836 @default.
- W4387666456 hasAuthorship W4387666456A5019172487 @default.
- W4387666456 hasAuthorship W4387666456A5083456016 @default.
- W4387666456 hasAuthorship W4387666456A5093069271 @default.
- W4387666456 hasBestOaLocation W43876664561 @default.
- W4387666456 hasConcept C105795698 @default.
- W4387666456 hasConcept C119857082 @default.
- W4387666456 hasConcept C124101348 @default.
- W4387666456 hasConcept C134306372 @default.
- W4387666456 hasConcept C140331021 @default.
- W4387666456 hasConcept C153180895 @default.
- W4387666456 hasConcept C154945302 @default.
- W4387666456 hasConcept C160920958 @default.
- W4387666456 hasConcept C185592680 @default.
- W4387666456 hasConcept C27286358 @default.
- W4387666456 hasConcept C33923547 @default.
- W4387666456 hasConcept C34146451 @default.
- W4387666456 hasConcept C39927690 @default.
- W4387666456 hasConcept C41008148 @default.
- W4387666456 hasConcept C43617362 @default.
- W4387666456 hasConcept C61272859 @default.
- W4387666456 hasConceptScore W4387666456C105795698 @default.
- W4387666456 hasConceptScore W4387666456C119857082 @default.
- W4387666456 hasConceptScore W4387666456C124101348 @default.
- W4387666456 hasConceptScore W4387666456C134306372 @default.
- W4387666456 hasConceptScore W4387666456C140331021 @default.
- W4387666456 hasConceptScore W4387666456C153180895 @default.
- W4387666456 hasConceptScore W4387666456C154945302 @default.
- W4387666456 hasConceptScore W4387666456C160920958 @default.
- W4387666456 hasConceptScore W4387666456C185592680 @default.
- W4387666456 hasConceptScore W4387666456C27286358 @default.
- W4387666456 hasConceptScore W4387666456C33923547 @default.
- W4387666456 hasConceptScore W4387666456C34146451 @default.
- W4387666456 hasConceptScore W4387666456C39927690 @default.
- W4387666456 hasConceptScore W4387666456C41008148 @default.
- W4387666456 hasConceptScore W4387666456C43617362 @default.
- W4387666456 hasConceptScore W4387666456C61272859 @default.
- W4387666456 hasFunder F4320323628 @default.
- W4387666456 hasIssue "10" @default.
- W4387666456 hasLocation W43876664561 @default.
- W4387666456 hasLocation W43876664562 @default.
- W4387666456 hasOpenAccess W4387666456 @default.