Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387667995> ?p ?o ?g. }
- W4387667995 endingPage "8493" @default.
- W4387667995 startingPage "8493" @default.
- W4387667995 abstract "Nearshore water depth plays a crucial role in scientific research, navigation management, coastal zone protection, and coastal disaster mitigation. This study aims to address the challenge of insufficient feature extraction from remote sensing data in nearshore water depth inversion. To achieve this, a convolutional neural network with spatial location integration (CNN-SLI) is proposed. The CNN-SLI is designed to extract deep features from remote sensing data by considering the spatial dimension. In this approach, the spatial location information of pixels is utilized as two additional channels, which are concatenated with the input feature image. The resulting concatenated image data are then used as the input for the convolutional neural network. Using GF-6 remote sensing images and measured water depth data from electronic nautical charts, a nearshore water depth inversion experiment was conducted in the waters near Nanshan Port. The results of the proposed method were compared with those of the Lyzenga, MLP, and CNN models. The CNN-SLI model demonstrated outstanding performance in water depth inversion, with impressive metrics: an RMSE of 1.34 m, MAE of 0.94 m, and R2 of 0.97. It outperformed all other models in terms of overall inversion accuracy and regression fit. Regardless of the water depth intervals, CNN-SLI consistently achieved the lowest RMSE and MAE values, indicating excellent performance in both shallow and deep waters. Comparative analysis with Kriging confirmed that the CNN-SLI model best matched the interpolated water depth, further establishing its superiority over the Lyzenga, MLP, and CNN models. Notably, in this study area, the CNN-SLI model exhibited significant performance advantages when trained with at least 250 samples, resulting in optimal inversion results. Accuracy evaluation on an independent dataset shows that the CNN-SLI model has better generalization ability than the Lyzenga, MLP, and CNN models under different conditions. These results demonstrate the superiority of CNN-SLI for nearshore water depth inversion and highlight the importance of integrating spatial location information into convolutional neural networks for improved performance." @default.
- W4387667995 created "2023-10-17" @default.
- W4387667995 creator A5017655580 @default.
- W4387667995 creator A5021430968 @default.
- W4387667995 creator A5059339041 @default.
- W4387667995 creator A5066660376 @default.
- W4387667995 date "2023-10-16" @default.
- W4387667995 modified "2023-10-17" @default.
- W4387667995 title "A Convolutional Neural Network with Spatial Location Integration for Nearshore Water Depth Inversion" @default.
- W4387667995 cites W1965671380 @default.
- W4387667995 cites W2000549868 @default.
- W4387667995 cites W2001359375 @default.
- W4387667995 cites W2033630816 @default.
- W4387667995 cites W2037975235 @default.
- W4387667995 cites W2054972686 @default.
- W4387667995 cites W2076063813 @default.
- W4387667995 cites W2105012295 @default.
- W4387667995 cites W2129247319 @default.
- W4387667995 cites W2168707907 @default.
- W4387667995 cites W2752891128 @default.
- W4387667995 cites W2800044216 @default.
- W4387667995 cites W2899161953 @default.
- W4387667995 cites W2922491478 @default.
- W4387667995 cites W2940939359 @default.
- W4387667995 cites W2945963590 @default.
- W4387667995 cites W2956549706 @default.
- W4387667995 cites W2972419975 @default.
- W4387667995 cites W2995272598 @default.
- W4387667995 cites W2997883112 @default.
- W4387667995 cites W3006602057 @default.
- W4387667995 cites W3031616041 @default.
- W4387667995 cites W3049306714 @default.
- W4387667995 cites W3080321686 @default.
- W4387667995 cites W3112513640 @default.
- W4387667995 cites W3127919366 @default.
- W4387667995 cites W3137634992 @default.
- W4387667995 cites W3158359751 @default.
- W4387667995 cites W3174629619 @default.
- W4387667995 cites W4206687767 @default.
- W4387667995 cites W4223545991 @default.
- W4387667995 cites W4283809513 @default.
- W4387667995 cites W4292393802 @default.
- W4387667995 cites W4293661583 @default.
- W4387667995 cites W4312964934 @default.
- W4387667995 cites W4382873862 @default.
- W4387667995 doi "https://doi.org/10.3390/s23208493" @default.
- W4387667995 hasPublicationYear "2023" @default.
- W4387667995 type Work @default.
- W4387667995 citedByCount "0" @default.
- W4387667995 crossrefType "journal-article" @default.
- W4387667995 hasAuthorship W4387667995A5017655580 @default.
- W4387667995 hasAuthorship W4387667995A5021430968 @default.
- W4387667995 hasAuthorship W4387667995A5059339041 @default.
- W4387667995 hasAuthorship W4387667995A5066660376 @default.
- W4387667995 hasBestOaLocation W43876679951 @default.
- W4387667995 hasConcept C105795698 @default.
- W4387667995 hasConcept C108583219 @default.
- W4387667995 hasConcept C109007969 @default.
- W4387667995 hasConcept C119857082 @default.
- W4387667995 hasConcept C127313418 @default.
- W4387667995 hasConcept C139945424 @default.
- W4387667995 hasConcept C151730666 @default.
- W4387667995 hasConcept C153180895 @default.
- W4387667995 hasConcept C154945302 @default.
- W4387667995 hasConcept C160633673 @default.
- W4387667995 hasConcept C1893757 @default.
- W4387667995 hasConcept C33923547 @default.
- W4387667995 hasConcept C41008148 @default.
- W4387667995 hasConcept C62649853 @default.
- W4387667995 hasConcept C81363708 @default.
- W4387667995 hasConcept C81692654 @default.
- W4387667995 hasConceptScore W4387667995C105795698 @default.
- W4387667995 hasConceptScore W4387667995C108583219 @default.
- W4387667995 hasConceptScore W4387667995C109007969 @default.
- W4387667995 hasConceptScore W4387667995C119857082 @default.
- W4387667995 hasConceptScore W4387667995C127313418 @default.
- W4387667995 hasConceptScore W4387667995C139945424 @default.
- W4387667995 hasConceptScore W4387667995C151730666 @default.
- W4387667995 hasConceptScore W4387667995C153180895 @default.
- W4387667995 hasConceptScore W4387667995C154945302 @default.
- W4387667995 hasConceptScore W4387667995C160633673 @default.
- W4387667995 hasConceptScore W4387667995C1893757 @default.
- W4387667995 hasConceptScore W4387667995C33923547 @default.
- W4387667995 hasConceptScore W4387667995C41008148 @default.
- W4387667995 hasConceptScore W4387667995C62649853 @default.
- W4387667995 hasConceptScore W4387667995C81363708 @default.
- W4387667995 hasConceptScore W4387667995C81692654 @default.
- W4387667995 hasIssue "20" @default.
- W4387667995 hasLocation W43876679951 @default.
- W4387667995 hasOpenAccess W4387667995 @default.
- W4387667995 hasPrimaryLocation W43876679951 @default.
- W4387667995 hasRelatedWork W1968523686 @default.
- W4387667995 hasRelatedWork W2017140292 @default.
- W4387667995 hasRelatedWork W2151794096 @default.
- W4387667995 hasRelatedWork W2167342507 @default.
- W4387667995 hasRelatedWork W2199291344 @default.
- W4387667995 hasRelatedWork W298893735 @default.
- W4387667995 hasRelatedWork W3123323883 @default.