Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387670900> ?p ?o ?g. }
- W4387670900 abstract "Abstract Methodologies for evaluating global climate models (GCMs) and generating multimodel ensembles have branched to meet the diverse needs of impact assessment studies. However, there has been limited focus on their intercomparison. In this context, a comprehensive framework comprising the major strands of GCM ranking and ensemble data generation is proposed in the current study. The framework incorporates error index‐based rankings and Bayesian method‐based weight distribution. Within the Bayesian analysis, a nonparametric (orthonormal) distribution is introduced in this study with the hypothesis that the efficiency of nonparametric distribution in modelling natural random phenomena will accentuate the efficiency of the ranking and ensemble process. Precipitation and temperature data of 21 GCMs from Coupled Model Intercomparison Project Phase 5 covering India is used to validate the proposed framework. Finally, the ensemble data generated from the framework is used for the analysis of projected extremes and their attribution. Results show that Bayesian framework‐based rankings outperform other methods in 87.5% of instances. In the case of precipitation, the orthonormal distribution‐based Bayesian ranking produces better results for 85.2% of India, while it produces the lowest error ensemble for 79% of the country. The data from the framework are compared to the widely used mathematical average of GCMs. It is found that for precipitation and maximum temperature, the weighted ensemble has closer proximity to the distributive properties of the observed data for the entire study area. Furthermore, uncertainty analysis shows that the ensemble data have minimum uncertainty for the entire area in the case of precipitation. Finally, the assessment of projected extremes shows low to medium confidence (~27%) in the attribution of precipitation extremes to anthropogenic causes under representative concentration pathway (RCP) 4.5, while under RCP 8.5, the confidence is around 80%. For temperature, it is greater than 90% in both scenarios." @default.
- W4387670900 created "2023-10-17" @default.
- W4387670900 creator A5010317052 @default.
- W4387670900 creator A5034701542 @default.
- W4387670900 date "2023-10-15" @default.
- W4387670900 modified "2023-10-17" @default.
- W4387670900 title "A novel framework for a multimodel ensemble of <scp>GCMs</scp> and its application in the analysis of projected extremes" @default.
- W4387670900 cites W1485625152 @default.
- W4387670900 cites W1559665021 @default.
- W4387670900 cites W1603903339 @default.
- W4387670900 cites W1897865373 @default.
- W4387670900 cites W1956072430 @default.
- W4387670900 cites W1965731662 @default.
- W4387670900 cites W1972168428 @default.
- W4387670900 cites W1973039273 @default.
- W4387670900 cites W1980081218 @default.
- W4387670900 cites W1985479415 @default.
- W4387670900 cites W1988316185 @default.
- W4387670900 cites W1993628891 @default.
- W4387670900 cites W1996478169 @default.
- W4387670900 cites W2004053254 @default.
- W4387670900 cites W2007670599 @default.
- W4387670900 cites W2010512486 @default.
- W4387670900 cites W2016628424 @default.
- W4387670900 cites W2021510303 @default.
- W4387670900 cites W2022645447 @default.
- W4387670900 cites W2024484984 @default.
- W4387670900 cites W2032015898 @default.
- W4387670900 cites W2032838653 @default.
- W4387670900 cites W2044387082 @default.
- W4387670900 cites W2046759075 @default.
- W4387670900 cites W2048170654 @default.
- W4387670900 cites W2050181607 @default.
- W4387670900 cites W2057452353 @default.
- W4387670900 cites W2059399382 @default.
- W4387670900 cites W2061705743 @default.
- W4387670900 cites W2070934910 @default.
- W4387670900 cites W2083883946 @default.
- W4387670900 cites W2084484206 @default.
- W4387670900 cites W2088300875 @default.
- W4387670900 cites W2100956194 @default.
- W4387670900 cites W2107123601 @default.
- W4387670900 cites W2133143175 @default.
- W4387670900 cites W2140362063 @default.
- W4387670900 cites W2151219339 @default.
- W4387670900 cites W2152325667 @default.
- W4387670900 cites W2158840489 @default.
- W4387670900 cites W2181460351 @default.
- W4387670900 cites W2239565017 @default.
- W4387670900 cites W2316786330 @default.
- W4387670900 cites W2488499618 @default.
- W4387670900 cites W2495072468 @default.
- W4387670900 cites W2767407403 @default.
- W4387670900 cites W2791655242 @default.
- W4387670900 cites W2792645694 @default.
- W4387670900 cites W2801574652 @default.
- W4387670900 cites W2896750585 @default.
- W4387670900 cites W2901928905 @default.
- W4387670900 cites W2905895468 @default.
- W4387670900 cites W2913276144 @default.
- W4387670900 cites W2978973442 @default.
- W4387670900 cites W3065581507 @default.
- W4387670900 cites W3099708321 @default.
- W4387670900 cites W3134954406 @default.
- W4387670900 cites W3185990888 @default.
- W4387670900 cites W4211177544 @default.
- W4387670900 cites W4246279504 @default.
- W4387670900 cites W4318047372 @default.
- W4387670900 doi "https://doi.org/10.1002/joc.8266" @default.
- W4387670900 hasPublicationYear "2023" @default.
- W4387670900 type Work @default.
- W4387670900 citedByCount "0" @default.
- W4387670900 crossrefType "journal-article" @default.
- W4387670900 hasAuthorship W4387670900A5010317052 @default.
- W4387670900 hasAuthorship W4387670900A5034701542 @default.
- W4387670900 hasConcept C102366305 @default.
- W4387670900 hasConcept C107054158 @default.
- W4387670900 hasConcept C107673813 @default.
- W4387670900 hasConcept C119857082 @default.
- W4387670900 hasConcept C119898033 @default.
- W4387670900 hasConcept C132651083 @default.
- W4387670900 hasConcept C149782125 @default.
- W4387670900 hasConcept C153294291 @default.
- W4387670900 hasConcept C154945302 @default.
- W4387670900 hasConcept C160234255 @default.
- W4387670900 hasConcept C166957645 @default.
- W4387670900 hasConcept C168754636 @default.
- W4387670900 hasConcept C18903297 @default.
- W4387670900 hasConcept C189430467 @default.
- W4387670900 hasConcept C205649164 @default.
- W4387670900 hasConcept C25022447 @default.
- W4387670900 hasConcept C2779343474 @default.
- W4387670900 hasConcept C33923547 @default.
- W4387670900 hasConcept C39432304 @default.
- W4387670900 hasConcept C41008148 @default.
- W4387670900 hasConcept C86803240 @default.
- W4387670900 hasConceptScore W4387670900C102366305 @default.
- W4387670900 hasConceptScore W4387670900C107054158 @default.
- W4387670900 hasConceptScore W4387670900C107673813 @default.
- W4387670900 hasConceptScore W4387670900C119857082 @default.