Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387671303> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4387671303 abstract "There has been a significant increase in IoT-related network traffic in recent years. The surge in IoT has resulted in a more complex network environment than ever before. In light of this, deep learning (DL)-based network traffic classification has gained prominence, because of its powerful feature extraction capabilities for complex problems. However, selecting hyperparameters for DL models, such as network depth, lacks a theoretical basis and costs a lot of time. Often, the setting of hyperparameters is not directly related to the inherent characteristics of the data but relies on empirical knowledge. Traditionally, hyperparameters are adjusted based on performance during model training, leading to a significant amount of tuning work. To address these problems, this paper proposes a novel DL-based anomaly network traffic classification algorithm. This algorithm estimates the required hyperparameters by analyzing the spectrum obtained from Fourier Transform of the input samples in advance, enhancing the efficiency of model training for IoT network traffic classification. Our experiments reveal that the complexity of the neural network is directly proportional to the spectrum of the data being trained. As the presence of high-frequency components increases, the complexity needed for the neural network parameters also rises. Based on the conclusions drawn from our experiments, we can pre-determine appropriate hyperparameters for the neural network, thereby saving over 70% of the time in neural network parameter tuning." @default.
- W4387671303 created "2023-10-17" @default.
- W4387671303 creator A5004435774 @default.
- W4387671303 creator A5027047483 @default.
- W4387671303 creator A5029675011 @default.
- W4387671303 creator A5057222304 @default.
- W4387671303 creator A5065284689 @default.
- W4387671303 date "2023-10-16" @default.
- W4387671303 modified "2023-10-17" @default.
- W4387671303 title "IoT network traffic classification: a deep learning method with Fourier transform-assisted hyperparameter optimization" @default.
- W4387671303 cites W2023721289 @default.
- W4387671303 cites W2066877142 @default.
- W4387671303 cites W2071897576 @default.
- W4387671303 cites W2100495367 @default.
- W4387671303 cites W2139399084 @default.
- W4387671303 cites W2153002160 @default.
- W4387671303 cites W2342408547 @default.
- W4387671303 cites W2618530766 @default.
- W4387671303 cites W2620580412 @default.
- W4387671303 cites W2892341857 @default.
- W4387671303 cites W2896532220 @default.
- W4387671303 cites W2908441554 @default.
- W4387671303 cites W2914767245 @default.
- W4387671303 cites W2944851425 @default.
- W4387671303 cites W2966906412 @default.
- W4387671303 cites W2967136126 @default.
- W4387671303 cites W2967243140 @default.
- W4387671303 cites W3033469067 @default.
- W4387671303 cites W3124539583 @default.
- W4387671303 cites W3128286744 @default.
- W4387671303 cites W3133665626 @default.
- W4387671303 cites W3133696297 @default.
- W4387671303 cites W3164089287 @default.
- W4387671303 cites W4245798716 @default.
- W4387671303 cites W4285248638 @default.
- W4387671303 cites W4313477275 @default.
- W4387671303 cites W4313598835 @default.
- W4387671303 cites W4376225158 @default.
- W4387671303 doi "https://doi.org/10.3389/fphy.2023.1273862" @default.
- W4387671303 hasPublicationYear "2023" @default.
- W4387671303 type Work @default.
- W4387671303 citedByCount "0" @default.
- W4387671303 crossrefType "journal-article" @default.
- W4387671303 hasAuthorship W4387671303A5004435774 @default.
- W4387671303 hasAuthorship W4387671303A5027047483 @default.
- W4387671303 hasAuthorship W4387671303A5029675011 @default.
- W4387671303 hasAuthorship W4387671303A5057222304 @default.
- W4387671303 hasAuthorship W4387671303A5065284689 @default.
- W4387671303 hasBestOaLocation W43876713031 @default.
- W4387671303 hasConcept C10485038 @default.
- W4387671303 hasConcept C108583219 @default.
- W4387671303 hasConcept C119857082 @default.
- W4387671303 hasConcept C12267149 @default.
- W4387671303 hasConcept C124101348 @default.
- W4387671303 hasConcept C153180895 @default.
- W4387671303 hasConcept C154945302 @default.
- W4387671303 hasConcept C41008148 @default.
- W4387671303 hasConcept C50644808 @default.
- W4387671303 hasConcept C8642999 @default.
- W4387671303 hasConceptScore W4387671303C10485038 @default.
- W4387671303 hasConceptScore W4387671303C108583219 @default.
- W4387671303 hasConceptScore W4387671303C119857082 @default.
- W4387671303 hasConceptScore W4387671303C12267149 @default.
- W4387671303 hasConceptScore W4387671303C124101348 @default.
- W4387671303 hasConceptScore W4387671303C153180895 @default.
- W4387671303 hasConceptScore W4387671303C154945302 @default.
- W4387671303 hasConceptScore W4387671303C41008148 @default.
- W4387671303 hasConceptScore W4387671303C50644808 @default.
- W4387671303 hasConceptScore W4387671303C8642999 @default.
- W4387671303 hasLocation W43876713031 @default.
- W4387671303 hasOpenAccess W4387671303 @default.
- W4387671303 hasPrimaryLocation W43876713031 @default.
- W4387671303 hasRelatedWork W1974336862 @default.
- W4387671303 hasRelatedWork W2602382373 @default.
- W4387671303 hasRelatedWork W2953665647 @default.
- W4387671303 hasRelatedWork W2954882791 @default.
- W4387671303 hasRelatedWork W3014750173 @default.
- W4387671303 hasRelatedWork W3169687406 @default.
- W4387671303 hasRelatedWork W3198113463 @default.
- W4387671303 hasRelatedWork W4205712847 @default.
- W4387671303 hasRelatedWork W4281646320 @default.
- W4387671303 hasRelatedWork W4287818966 @default.
- W4387671303 hasVolume "11" @default.
- W4387671303 isParatext "false" @default.
- W4387671303 isRetracted "false" @default.
- W4387671303 workType "article" @default.