Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387672425> ?p ?o ?g. }
- W4387672425 abstract "Abstract Survey sampling and, more generally, Official Statistics are experiencing an important renovation time. On one hand, there is the need to exploit the huge information potentiality that the digital revolution made available in terms of data. On the other hand, this process occurred simultaneously with a progressive deterioration of the quality of classical sample surveys, due to a decreasing willingness to participate and an increasing rate of missing responses. The switch from survey-based inference to a hybrid system involving register-based information has made more stringent the debate and the possible resolution of the design-based versus model-based approaches controversy. In this new framework, the use of statistical models seems unavoidable and it is today a relevant part of the official statistician toolkit. Models are important in several different contexts, from Small area estimation to non sampling error adjustment, but they are also crucial for correcting bias due to over and undercoverage of administrative data, in order to prevent potential selection bias, and to deal with different definitions and/or errors in the measurement process of the administrative sources. The progressive shift from a design-based to a model-based approach in terms of super-population is a matter of fact in the practice of the National Statistical Institutes. However, the introduction of Bayesian ideas in official statistics still encounters difficulties and resistance. In this work, we attempt a non-systematic review of the Bayesian development in this area and try to highlight the extra benefit that a Bayesian approach might provide. Our general conclusion is that, while the general picture is today clear and most of the basic topics of survey sampling can be easily rephrased and tackled from a Bayesian perspective, much work is still necessary for the availability of a ready-to-use platform of Bayesian survey sampling in the presence of complex sampling design, non-ignorable missing data patterns, and large datasets." @default.
- W4387672425 created "2023-10-17" @default.
- W4387672425 creator A5007124363 @default.
- W4387672425 creator A5043196497 @default.
- W4387672425 creator A5054046209 @default.
- W4387672425 date "2023-10-16" @default.
- W4387672425 modified "2023-10-17" @default.
- W4387672425 title "Bayesian Ideas in Survey Sampling: The Legacy of Basu" @default.
- W4387672425 cites W1536497620 @default.
- W4387672425 cites W163219943 @default.
- W4387672425 cites W1987968520 @default.
- W4387672425 cites W1990720233 @default.
- W4387672425 cites W1993832265 @default.
- W4387672425 cites W2001994823 @default.
- W4387672425 cites W2017436910 @default.
- W4387672425 cites W2032376175 @default.
- W4387672425 cites W2032394556 @default.
- W4387672425 cites W2052097769 @default.
- W4387672425 cites W2071830580 @default.
- W4387672425 cites W2089980968 @default.
- W4387672425 cites W2116855184 @default.
- W4387672425 cites W2142499192 @default.
- W4387672425 cites W2146336951 @default.
- W4387672425 cites W2176693060 @default.
- W4387672425 cites W228425655 @default.
- W4387672425 cites W2318655531 @default.
- W4387672425 cites W2489398676 @default.
- W4387672425 cites W2494902353 @default.
- W4387672425 cites W2612145410 @default.
- W4387672425 cites W2612253474 @default.
- W4387672425 cites W2613889334 @default.
- W4387672425 cites W2790417993 @default.
- W4387672425 cites W2793479898 @default.
- W4387672425 cites W2796432524 @default.
- W4387672425 cites W2798087041 @default.
- W4387672425 cites W2883811944 @default.
- W4387672425 cites W2920239148 @default.
- W4387672425 cites W2950850074 @default.
- W4387672425 cites W2963140874 @default.
- W4387672425 cites W2999746969 @default.
- W4387672425 cites W3009482083 @default.
- W4387672425 cites W3092806957 @default.
- W4387672425 cites W3103255703 @default.
- W4387672425 cites W3133707149 @default.
- W4387672425 cites W3199469042 @default.
- W4387672425 cites W4239728164 @default.
- W4387672425 cites W4288050399 @default.
- W4387672425 cites W4302232646 @default.
- W4387672425 cites W4386697466 @default.
- W4387672425 cites W629338568 @default.
- W4387672425 doi "https://doi.org/10.1007/s13171-023-00327-5" @default.
- W4387672425 hasPublicationYear "2023" @default.
- W4387672425 type Work @default.
- W4387672425 citedByCount "0" @default.
- W4387672425 crossrefType "journal-article" @default.
- W4387672425 hasAuthorship W4387672425A5007124363 @default.
- W4387672425 hasAuthorship W4387672425A5043196497 @default.
- W4387672425 hasAuthorship W4387672425A5054046209 @default.
- W4387672425 hasBestOaLocation W43876724251 @default.
- W4387672425 hasConcept C101112237 @default.
- W4387672425 hasConcept C105795698 @default.
- W4387672425 hasConcept C106131492 @default.
- W4387672425 hasConcept C107673813 @default.
- W4387672425 hasConcept C111472728 @default.
- W4387672425 hasConcept C111919701 @default.
- W4387672425 hasConcept C119857082 @default.
- W4387672425 hasConcept C124101348 @default.
- W4387672425 hasConcept C129963666 @default.
- W4387672425 hasConcept C138885662 @default.
- W4387672425 hasConcept C140779682 @default.
- W4387672425 hasConcept C144024400 @default.
- W4387672425 hasConcept C149782125 @default.
- W4387672425 hasConcept C149923435 @default.
- W4387672425 hasConcept C154945302 @default.
- W4387672425 hasConcept C160234255 @default.
- W4387672425 hasConcept C162324750 @default.
- W4387672425 hasConcept C165696696 @default.
- W4387672425 hasConcept C185429906 @default.
- W4387672425 hasConcept C185592680 @default.
- W4387672425 hasConcept C198531522 @default.
- W4387672425 hasConcept C2522767166 @default.
- W4387672425 hasConcept C2779530757 @default.
- W4387672425 hasConcept C2779677306 @default.
- W4387672425 hasConcept C2908647359 @default.
- W4387672425 hasConcept C31972630 @default.
- W4387672425 hasConcept C33923547 @default.
- W4387672425 hasConcept C38652104 @default.
- W4387672425 hasConcept C40423286 @default.
- W4387672425 hasConcept C41008148 @default.
- W4387672425 hasConcept C43617362 @default.
- W4387672425 hasConcept C5733905 @default.
- W4387672425 hasConcept C75373757 @default.
- W4387672425 hasConcept C9357733 @default.
- W4387672425 hasConcept C98045186 @default.
- W4387672425 hasConceptScore W4387672425C101112237 @default.
- W4387672425 hasConceptScore W4387672425C105795698 @default.
- W4387672425 hasConceptScore W4387672425C106131492 @default.
- W4387672425 hasConceptScore W4387672425C107673813 @default.
- W4387672425 hasConceptScore W4387672425C111472728 @default.
- W4387672425 hasConceptScore W4387672425C111919701 @default.