Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387673265> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4387673265 endingPage "3221" @default.
- W4387673265 startingPage "3221" @default.
- W4387673265 abstract "Background: Heart failure (HF) causes high morbidity and mortality worldwide. The prevalence of HF with preserved ejection fraction (HFpEF) is increasing compared with HF with reduced ejection fraction (HFrEF). Patients with HFpEF are a patient group with a high rate of hospitalization despite medical treatment. Early diagnosis is very important in this group of patients, and early treatment can improve their prognosis. Although electrocardiographic (ECG) findings have been adequately studied in patients with HFrEF, there are not enough studies on these parameters in patients with HFpEF. There are very few studies in the literature, especially on gender-specific changes. The current research aims to compare gender-specific ECG parameters in patients with HFpEF based on the implications of artificial intelligence (AI). Methods: A total of 118 patients participated in the study, of which 66 (56%) were women with HFpEF and 52 (44%) were men with HFpEF. Demographic, echocardiographic, and electrocardiographic characteristics of the patients were analyzed to compare gender-specific ECG parameters in patients with HFpEF. The AI approach combined with machine learning approaches (gradient boosting machine, k-nearest neighbors, logistic regression, random forest, and support vector machines) was applied for distinguishing male patients with HFpEF from female patients with HFpEF. Results: After determining the parameters (demographic, echocardiographic, and electrocardiographic) to distinguish male patients with HFpEF from female patients with HFpEF, machine learning methods were applied, and among these methods, the random forest model achieved an average accuracy of 84.7%. The random forest algorithm results showed that smoking, P-wave dispersion, P-wave amplitude, T-end P/(PQ*Age), Cornell product, and P-wave duration were the most influential parameters for distinguishing male patients with HFpEF from female patients with HFpEF. Conclusions: The proposed model serves as a valuable tool for physicians, facilitating the diagnosis, treatment, and follow-up for distinguishing male patients with HFpEF from female patients with HFpEF. Analyzing readily accessible electrocardiographic parameters empowers medical professionals to make informed decisions and provide enhanced care to a wide range of individuals." @default.
- W4387673265 created "2023-10-17" @default.
- W4387673265 creator A5008429727 @default.
- W4387673265 creator A5062818367 @default.
- W4387673265 date "2023-10-16" @default.
- W4387673265 modified "2023-10-17" @default.
- W4387673265 title "Comparison of Electrocardiographic Parameters by Gender in Heart Failure Patients with Preserved Ejection Fraction via Artificial Intelligence" @default.
- W4387673265 cites W1998337984 @default.
- W4387673265 cites W2001984572 @default.
- W4387673265 cites W2005551283 @default.
- W4387673265 cites W2010688960 @default.
- W4387673265 cites W2013800694 @default.
- W4387673265 cites W2021543793 @default.
- W4387673265 cites W2033989169 @default.
- W4387673265 cites W2036185124 @default.
- W4387673265 cites W2043598298 @default.
- W4387673265 cites W2053154970 @default.
- W4387673265 cites W2057047340 @default.
- W4387673265 cites W2088299079 @default.
- W4387673265 cites W2088794999 @default.
- W4387673265 cites W2089270408 @default.
- W4387673265 cites W2115350032 @default.
- W4387673265 cites W2141766660 @default.
- W4387673265 cites W2151056321 @default.
- W4387673265 cites W2163818416 @default.
- W4387673265 cites W2177870565 @default.
- W4387673265 cites W2193067351 @default.
- W4387673265 cites W2208343980 @default.
- W4387673265 cites W2313186535 @default.
- W4387673265 cites W2342603028 @default.
- W4387673265 cites W2549872286 @default.
- W4387673265 cites W2605665581 @default.
- W4387673265 cites W2799456480 @default.
- W4387673265 cites W2971111962 @default.
- W4387673265 cites W2979509696 @default.
- W4387673265 cites W2991737449 @default.
- W4387673265 cites W3043995050 @default.
- W4387673265 cites W3048867135 @default.
- W4387673265 cites W3168524505 @default.
- W4387673265 cites W3172836704 @default.
- W4387673265 cites W3193598686 @default.
- W4387673265 cites W4210937888 @default.
- W4387673265 cites W4223949956 @default.
- W4387673265 cites W4284672748 @default.
- W4387673265 doi "https://doi.org/10.3390/diagnostics13203221" @default.
- W4387673265 hasPublicationYear "2023" @default.
- W4387673265 type Work @default.
- W4387673265 citedByCount "0" @default.
- W4387673265 crossrefType "journal-article" @default.
- W4387673265 hasAuthorship W4387673265A5008429727 @default.
- W4387673265 hasAuthorship W4387673265A5062818367 @default.
- W4387673265 hasBestOaLocation W43876732651 @default.
- W4387673265 hasConcept C119857082 @default.
- W4387673265 hasConcept C126322002 @default.
- W4387673265 hasConcept C151956035 @default.
- W4387673265 hasConcept C164705383 @default.
- W4387673265 hasConcept C169258074 @default.
- W4387673265 hasConcept C2777099384 @default.
- W4387673265 hasConcept C2778198053 @default.
- W4387673265 hasConcept C41008148 @default.
- W4387673265 hasConcept C71924100 @default.
- W4387673265 hasConcept C78085059 @default.
- W4387673265 hasConceptScore W4387673265C119857082 @default.
- W4387673265 hasConceptScore W4387673265C126322002 @default.
- W4387673265 hasConceptScore W4387673265C151956035 @default.
- W4387673265 hasConceptScore W4387673265C164705383 @default.
- W4387673265 hasConceptScore W4387673265C169258074 @default.
- W4387673265 hasConceptScore W4387673265C2777099384 @default.
- W4387673265 hasConceptScore W4387673265C2778198053 @default.
- W4387673265 hasConceptScore W4387673265C41008148 @default.
- W4387673265 hasConceptScore W4387673265C71924100 @default.
- W4387673265 hasConceptScore W4387673265C78085059 @default.
- W4387673265 hasIssue "20" @default.
- W4387673265 hasLocation W43876732651 @default.
- W4387673265 hasOpenAccess W4387673265 @default.
- W4387673265 hasPrimaryLocation W43876732651 @default.
- W4387673265 hasRelatedWork W1971710084 @default.
- W4387673265 hasRelatedWork W2028196543 @default.
- W4387673265 hasRelatedWork W2072108749 @default.
- W4387673265 hasRelatedWork W2481234813 @default.
- W4387673265 hasRelatedWork W2891746874 @default.
- W4387673265 hasRelatedWork W2920829402 @default.
- W4387673265 hasRelatedWork W3164268473 @default.
- W4387673265 hasRelatedWork W4207030337 @default.
- W4387673265 hasRelatedWork W4367335965 @default.
- W4387673265 hasRelatedWork W4385574838 @default.
- W4387673265 hasVolume "13" @default.
- W4387673265 isParatext "false" @default.
- W4387673265 isRetracted "false" @default.
- W4387673265 workType "article" @default.