Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387673504> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4387673504 endingPage "11345" @default.
- W4387673504 startingPage "11345" @default.
- W4387673504 abstract "Objectives: To develop and validate a machine learning-based CT radiomics classification model for distinguishing benign renal tumors from malignant renal tumors. Methods: We reviewed 499 patients who underwent nephrectomy for solid renal tumors at our institution between 2003 and 2021. In this retrospective study, patients who had undergone a computed tomography (CT) scan within 3 months before surgery were included. We randomly divided the dataset in a stratified manner as follows: 75% as the training set and 25% as the test set. By using various feature selection methods and a dimensionality reduction method exclusively for the training set, we selected 160 radiomic features out of 1,288 radiomic features to classify malignant renal tumors. Results: The training set included 396 patients, and the test set included 103 patients. The percentage of extracted radiomic features from patients was 32% (385/1218) after the reproducibility test. In terms of the average Area Under the Receiver Operating Characteristic Curve (AU-ROC) and the average Area Under the Precision-Recall Curve (AU-PRC), the Random Forest model achieved better performance (AU-ROC = 0.725; AU-PRC = 0.899). An average accuracy of 0.778 was obtained on evaluation with the hold-out test set. At the optimal threshold, the Random Forest model showed an F1 score of 0.746, precision of 0.862, sensitivity of 0.657, specificity of 0.651, and Negative Predictive Value (NPV) of 0.364. Conclusions: Our machine learning-based CT radiomics classification model performed well for the independent test set, indicating that it could be a useful tool for discriminating between malignant and benign solid renal tumors." @default.
- W4387673504 created "2023-10-17" @default.
- W4387673504 creator A5007690589 @default.
- W4387673504 creator A5013271513 @default.
- W4387673504 creator A5020284169 @default.
- W4387673504 creator A5033979262 @default.
- W4387673504 creator A5034422624 @default.
- W4387673504 creator A5067675988 @default.
- W4387673504 creator A5091022795 @default.
- W4387673504 date "2023-10-16" @default.
- W4387673504 modified "2023-10-17" @default.
- W4387673504 title "Development and Validation of a Prediction Model for Differentiation of Benign and Malignant Fat-Poor Renal Tumors Using CT Radiomics" @default.
- W4387673504 cites W2141571201 @default.
- W4387673504 cites W2164317031 @default.
- W4387673504 cites W2255561391 @default.
- W4387673504 cites W2767128594 @default.
- W4387673504 cites W2892325025 @default.
- W4387673504 cites W2910268554 @default.
- W4387673504 cites W2949676527 @default.
- W4387673504 cites W3043189874 @default.
- W4387673504 cites W3102476541 @default.
- W4387673504 cites W3172711942 @default.
- W4387673504 cites W4213428482 @default.
- W4387673504 cites W4319063757 @default.
- W4387673504 cites W4362606820 @default.
- W4387673504 cites W4365143687 @default.
- W4387673504 cites W4382632144 @default.
- W4387673504 cites W4383068448 @default.
- W4387673504 cites W4385548973 @default.
- W4387673504 doi "https://doi.org/10.3390/app132011345" @default.
- W4387673504 hasPublicationYear "2023" @default.
- W4387673504 type Work @default.
- W4387673504 citedByCount "0" @default.
- W4387673504 crossrefType "journal-article" @default.
- W4387673504 hasAuthorship W4387673504A5007690589 @default.
- W4387673504 hasAuthorship W4387673504A5013271513 @default.
- W4387673504 hasAuthorship W4387673504A5020284169 @default.
- W4387673504 hasAuthorship W4387673504A5033979262 @default.
- W4387673504 hasAuthorship W4387673504A5034422624 @default.
- W4387673504 hasAuthorship W4387673504A5067675988 @default.
- W4387673504 hasAuthorship W4387673504A5091022795 @default.
- W4387673504 hasBestOaLocation W43876735041 @default.
- W4387673504 hasConcept C119857082 @default.
- W4387673504 hasConcept C126322002 @default.
- W4387673504 hasConcept C126838900 @default.
- W4387673504 hasConcept C148483581 @default.
- W4387673504 hasConcept C154945302 @default.
- W4387673504 hasConcept C169258074 @default.
- W4387673504 hasConcept C169903167 @default.
- W4387673504 hasConcept C2778559731 @default.
- W4387673504 hasConcept C41008148 @default.
- W4387673504 hasConcept C58471807 @default.
- W4387673504 hasConcept C71924100 @default.
- W4387673504 hasConceptScore W4387673504C119857082 @default.
- W4387673504 hasConceptScore W4387673504C126322002 @default.
- W4387673504 hasConceptScore W4387673504C126838900 @default.
- W4387673504 hasConceptScore W4387673504C148483581 @default.
- W4387673504 hasConceptScore W4387673504C154945302 @default.
- W4387673504 hasConceptScore W4387673504C169258074 @default.
- W4387673504 hasConceptScore W4387673504C169903167 @default.
- W4387673504 hasConceptScore W4387673504C2778559731 @default.
- W4387673504 hasConceptScore W4387673504C41008148 @default.
- W4387673504 hasConceptScore W4387673504C58471807 @default.
- W4387673504 hasConceptScore W4387673504C71924100 @default.
- W4387673504 hasIssue "20" @default.
- W4387673504 hasLocation W43876735041 @default.
- W4387673504 hasOpenAccess W4387673504 @default.
- W4387673504 hasPrimaryLocation W43876735041 @default.
- W4387673504 hasRelatedWork W1517228774 @default.
- W4387673504 hasRelatedWork W2117019857 @default.
- W4387673504 hasRelatedWork W2389704471 @default.
- W4387673504 hasRelatedWork W2734724112 @default.
- W4387673504 hasRelatedWork W2767419625 @default.
- W4387673504 hasRelatedWork W3000891326 @default.
- W4387673504 hasRelatedWork W3127798246 @default.
- W4387673504 hasRelatedWork W4205100762 @default.
- W4387673504 hasRelatedWork W4225316186 @default.
- W4387673504 hasRelatedWork W4363647452 @default.
- W4387673504 hasVolume "13" @default.
- W4387673504 isParatext "false" @default.
- W4387673504 isRetracted "false" @default.
- W4387673504 workType "article" @default.