Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387675124> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4387675124 abstract "Abstract In this letter, supervised machine learning classifiers are compared with clustering algorithms in the categorization of malfunctioned rotor systems. For this purpose, a dataset containing 660 faulted rotor‐bearing systems—that are, unbalanced, misaligned, and cracked—is used. Samples are created utilizing the finite element method in MATLAB. A sequential forward selection (SFS) method is employed to reduce the number of features in the signal‐processing stage after the feature extraction phase in the time, frequency, and time–frequency domains. The outcomes of three supervised algorithms—support vector machine, k‐nearest neighbors, and ensemble learning, as well as one unsupervised procedure, e.g., k‐Means clustering, are compared. In the latter method, to find the optimal number of clusters, the Calinski–Harabasz criterion is applied. The findings represent that, even though the supervised methods' acquired accuracies are noticeably higher (97.7% in the validation stage), using clustering algorithms can be beneficial in a variety of real‐time condition monitoring applications in rotating machines where the type, extent, and location of the damage are unknown." @default.
- W4387675124 created "2023-10-17" @default.
- W4387675124 creator A5042634752 @default.
- W4387675124 creator A5068143911 @default.
- W4387675124 creator A5083724264 @default.
- W4387675124 creator A5093071149 @default.
- W4387675124 date "2023-10-01" @default.
- W4387675124 modified "2023-10-17" @default.
- W4387675124 title "Application of Supervised and Unsupervised Machine Learning to the Classification of Damaged Rotor‐Bearing Systems" @default.
- W4387675124 cites W2030196304 @default.
- W4387675124 cites W2040474037 @default.
- W4387675124 cites W2171913109 @default.
- W4387675124 cites W2767375627 @default.
- W4387675124 cites W2942280624 @default.
- W4387675124 cites W3005959642 @default.
- W4387675124 cites W3137540362 @default.
- W4387675124 cites W4200117896 @default.
- W4387675124 cites W4234464351 @default.
- W4387675124 cites W4237523859 @default.
- W4387675124 cites W4252067759 @default.
- W4387675124 cites W4282839637 @default.
- W4387675124 cites W4291676443 @default.
- W4387675124 cites W4295813927 @default.
- W4387675124 cites W4297894549 @default.
- W4387675124 doi "https://doi.org/10.1002/masy.202200219" @default.
- W4387675124 hasPublicationYear "2023" @default.
- W4387675124 type Work @default.
- W4387675124 citedByCount "0" @default.
- W4387675124 crossrefType "journal-article" @default.
- W4387675124 hasAuthorship W4387675124A5042634752 @default.
- W4387675124 hasAuthorship W4387675124A5068143911 @default.
- W4387675124 hasAuthorship W4387675124A5083724264 @default.
- W4387675124 hasAuthorship W4387675124A5093071149 @default.
- W4387675124 hasBestOaLocation W43876751241 @default.
- W4387675124 hasConcept C111919701 @default.
- W4387675124 hasConcept C119857082 @default.
- W4387675124 hasConcept C12267149 @default.
- W4387675124 hasConcept C127413603 @default.
- W4387675124 hasConcept C136389625 @default.
- W4387675124 hasConcept C148483581 @default.
- W4387675124 hasConcept C153180895 @default.
- W4387675124 hasConcept C154945302 @default.
- W4387675124 hasConcept C17281054 @default.
- W4387675124 hasConcept C199978012 @default.
- W4387675124 hasConcept C2780365114 @default.
- W4387675124 hasConcept C41008148 @default.
- W4387675124 hasConcept C50644808 @default.
- W4387675124 hasConcept C52622490 @default.
- W4387675124 hasConcept C73555534 @default.
- W4387675124 hasConcept C78519656 @default.
- W4387675124 hasConcept C8038995 @default.
- W4387675124 hasConcept C94124525 @default.
- W4387675124 hasConceptScore W4387675124C111919701 @default.
- W4387675124 hasConceptScore W4387675124C119857082 @default.
- W4387675124 hasConceptScore W4387675124C12267149 @default.
- W4387675124 hasConceptScore W4387675124C127413603 @default.
- W4387675124 hasConceptScore W4387675124C136389625 @default.
- W4387675124 hasConceptScore W4387675124C148483581 @default.
- W4387675124 hasConceptScore W4387675124C153180895 @default.
- W4387675124 hasConceptScore W4387675124C154945302 @default.
- W4387675124 hasConceptScore W4387675124C17281054 @default.
- W4387675124 hasConceptScore W4387675124C199978012 @default.
- W4387675124 hasConceptScore W4387675124C2780365114 @default.
- W4387675124 hasConceptScore W4387675124C41008148 @default.
- W4387675124 hasConceptScore W4387675124C50644808 @default.
- W4387675124 hasConceptScore W4387675124C52622490 @default.
- W4387675124 hasConceptScore W4387675124C73555534 @default.
- W4387675124 hasConceptScore W4387675124C78519656 @default.
- W4387675124 hasConceptScore W4387675124C8038995 @default.
- W4387675124 hasConceptScore W4387675124C94124525 @default.
- W4387675124 hasIssue "1" @default.
- W4387675124 hasLocation W43876751241 @default.
- W4387675124 hasOpenAccess W4387675124 @default.
- W4387675124 hasPrimaryLocation W43876751241 @default.
- W4387675124 hasRelatedWork W143775194 @default.
- W4387675124 hasRelatedWork W2057778272 @default.
- W4387675124 hasRelatedWork W2163389298 @default.
- W4387675124 hasRelatedWork W2986085304 @default.
- W4387675124 hasRelatedWork W3047177827 @default.
- W4387675124 hasRelatedWork W3080681248 @default.
- W4387675124 hasRelatedWork W3148060700 @default.
- W4387675124 hasRelatedWork W4287685660 @default.
- W4387675124 hasRelatedWork W4319302697 @default.
- W4387675124 hasRelatedWork W4376646226 @default.
- W4387675124 hasVolume "411" @default.
- W4387675124 isParatext "false" @default.
- W4387675124 isRetracted "false" @default.
- W4387675124 workType "article" @default.