Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387675304> ?p ?o ?g. }
- W4387675304 abstract "This paper presents a straightforward and efficient numerical simulation method for solving the Navier–Stokes equations for weakly viscous incompressible fluids describing steady flow. Our approach utilizes isogeometric finite elements to handle higher-order partial differential operators associated with weakly viscous incompressible flow problems. Specifically, our numerical formulation employs a principle of virtual power (PVP)-based weak formulation that utilizes a stream-function field, which distinguishes it from the more commonly used bi-harmonic type formulations. The usage of a stream-function field ensures a pointwise divergence-free velocity condition, making the present method suitable for low to moderately high Reynolds number flow problems. In contrast to the bi-harmonic formulation, which is typically used for describing internal flow and requires special treatment of outflow boundary conditions, the PVP-based formulation is more general and does not require special treatment at the outflow boundary. It is also demonstrated that both bi-harmonic and PVP-based weak formulations yield identical results for internal flow problems. Our method employs non-uniform rational B-spline basis functions, and we present a simple stitching technique for imposing no-slip Dirichlet boundary conditions. Finally, we solve Poisson's equation to recover the pressure field. Furthermore, we use an appropriate Gaussian quadrature that is exact for splines to speed up the computation of various element matrices, especially for high polynomial degrees. The proposed formulation is evaluated by solving a set of numerical problems, including internal flow and channel flow problems." @default.
- W4387675304 created "2023-10-17" @default.
- W4387675304 creator A5044282340 @default.
- W4387675304 creator A5093071163 @default.
- W4387675304 date "2023-10-01" @default.
- W4387675304 modified "2023-10-17" @default.
- W4387675304 title "Weakly viscous two-dimensional incompressible fluid flows using efficient isogeometric finite element method" @default.
- W4387675304 cites W1579138061 @default.
- W4387675304 cites W1718306725 @default.
- W4387675304 cites W1833089043 @default.
- W4387675304 cites W1974396700 @default.
- W4387675304 cites W1989104210 @default.
- W4387675304 cites W1990278947 @default.
- W4387675304 cites W2000194797 @default.
- W4387675304 cites W2004791619 @default.
- W4387675304 cites W2008380267 @default.
- W4387675304 cites W2019715291 @default.
- W4387675304 cites W2021041911 @default.
- W4387675304 cites W2025224830 @default.
- W4387675304 cites W2038339316 @default.
- W4387675304 cites W2038724307 @default.
- W4387675304 cites W2040567494 @default.
- W4387675304 cites W2047524049 @default.
- W4387675304 cites W2049923455 @default.
- W4387675304 cites W2052060476 @default.
- W4387675304 cites W206256087 @default.
- W4387675304 cites W2065438814 @default.
- W4387675304 cites W2069115363 @default.
- W4387675304 cites W2071514039 @default.
- W4387675304 cites W2073897969 @default.
- W4387675304 cites W2083764134 @default.
- W4387675304 cites W2086122141 @default.
- W4387675304 cites W2089000584 @default.
- W4387675304 cites W2097427900 @default.
- W4387675304 cites W2097698547 @default.
- W4387675304 cites W2099656682 @default.
- W4387675304 cites W2105790566 @default.
- W4387675304 cites W2110186881 @default.
- W4387675304 cites W2114518462 @default.
- W4387675304 cites W2115855800 @default.
- W4387675304 cites W2116317450 @default.
- W4387675304 cites W2147645755 @default.
- W4387675304 cites W2156652224 @default.
- W4387675304 cites W2158034547 @default.
- W4387675304 cites W2158690797 @default.
- W4387675304 cites W2164454265 @default.
- W4387675304 cites W2169204784 @default.
- W4387675304 cites W2343159378 @default.
- W4387675304 cites W2552969275 @default.
- W4387675304 cites W2598688500 @default.
- W4387675304 cites W2913783971 @default.
- W4387675304 cites W2970077600 @default.
- W4387675304 cites W2971851638 @default.
- W4387675304 cites W2981553024 @default.
- W4387675304 cites W2985674139 @default.
- W4387675304 cites W3099884106 @default.
- W4387675304 cites W3141300353 @default.
- W4387675304 cites W3194745780 @default.
- W4387675304 cites W3210677690 @default.
- W4387675304 cites W4206072436 @default.
- W4387675304 cites W4211245755 @default.
- W4387675304 cites W4212988898 @default.
- W4387675304 cites W4249537394 @default.
- W4387675304 cites W4250002170 @default.
- W4387675304 cites W4282945604 @default.
- W4387675304 cites W4322102666 @default.
- W4387675304 cites W4362553108 @default.
- W4387675304 cites W4365458391 @default.
- W4387675304 doi "https://doi.org/10.1063/5.0159110" @default.
- W4387675304 hasPublicationYear "2023" @default.
- W4387675304 type Work @default.
- W4387675304 citedByCount "0" @default.
- W4387675304 crossrefType "journal-article" @default.
- W4387675304 hasAuthorship W4387675304A5044282340 @default.
- W4387675304 hasAuthorship W4387675304A5093071163 @default.
- W4387675304 hasConcept C121332964 @default.
- W4387675304 hasConcept C134306372 @default.
- W4387675304 hasConcept C135628077 @default.
- W4387675304 hasConcept C140820882 @default.
- W4387675304 hasConcept C182310444 @default.
- W4387675304 hasConcept C18932819 @default.
- W4387675304 hasConcept C200114574 @default.
- W4387675304 hasConcept C2780737243 @default.
- W4387675304 hasConcept C28826006 @default.
- W4387675304 hasConcept C33923547 @default.
- W4387675304 hasConcept C38349280 @default.
- W4387675304 hasConcept C50415386 @default.
- W4387675304 hasConcept C57879066 @default.
- W4387675304 hasConcept C5917680 @default.
- W4387675304 hasConcept C97355855 @default.
- W4387675304 hasConceptScore W4387675304C121332964 @default.
- W4387675304 hasConceptScore W4387675304C134306372 @default.
- W4387675304 hasConceptScore W4387675304C135628077 @default.
- W4387675304 hasConceptScore W4387675304C140820882 @default.
- W4387675304 hasConceptScore W4387675304C182310444 @default.
- W4387675304 hasConceptScore W4387675304C18932819 @default.
- W4387675304 hasConceptScore W4387675304C200114574 @default.
- W4387675304 hasConceptScore W4387675304C2780737243 @default.
- W4387675304 hasConceptScore W4387675304C28826006 @default.
- W4387675304 hasConceptScore W4387675304C33923547 @default.