Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387675520> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4387675520 endingPage "122181" @default.
- W4387675520 startingPage "122181" @default.
- W4387675520 abstract "High-end vehicles have been equipped with several electronic control units (ECUs), which provide upgrading functions to enhance the driving experience. The controller area network (CAN) is a well-known protocol that connects these ECUs because of its modesty and efficiency. However, the CAN bus is vulnerable to various types of attacks. Although the intrusion detection system (IDS) is proposed to address the security problem of the CAN bus, most previous studies only provide alerts when attacks occur without knowing the specific type of attack. Moreover, an IDS is designed for a specific car model due to diverse car manufacturers. In this study, we proposed a novel deep learning model called supervised contrastive (SupCon) ResNet, which can handle multiple attack classification on the CAN bus. Furthermore, the model can be used to improve the performance of a limited-size dataset using a transfer learning technique. The capability of the proposed model is evaluated on two real car datasets. When tested with the Car Hacking dataset, the experiment results show that the SupCon loss reduces the overall false-negative rates of four types of attack by an average of five times compared to the vanilla cross-entropy loss. In addition, the model achieves the highest F1 score on both the vehicle models of the survival dataset by utilizing transfer learning. Finally, the model can adapt to hardware constraints in terms of memory size and running time to be deployed in real devices." @default.
- W4387675520 created "2023-10-17" @default.
- W4387675520 creator A5048529571 @default.
- W4387675520 creator A5081227079 @default.
- W4387675520 date "2023-10-01" @default.
- W4387675520 modified "2023-10-17" @default.
- W4387675520 title "Supervised Contrastive ResNet and Transfer Learning for the In-vehicle Intrusion Detection System" @default.
- W4387675520 cites W2065806894 @default.
- W4387675520 cites W2112538708 @default.
- W4387675520 cites W2165698076 @default.
- W4387675520 cites W2194775991 @default.
- W4387675520 cites W2461378669 @default.
- W4387675520 cites W2892564986 @default.
- W4387675520 cites W2959120033 @default.
- W4387675520 cites W2970148885 @default.
- W4387675520 cites W2979202956 @default.
- W4387675520 cites W3161599138 @default.
- W4387675520 cites W3195279647 @default.
- W4387675520 cites W3197115256 @default.
- W4387675520 cites W3200594578 @default.
- W4387675520 cites W4200065521 @default.
- W4387675520 cites W4206170716 @default.
- W4387675520 cites W4226441780 @default.
- W4387675520 cites W4281705685 @default.
- W4387675520 cites W4294860585 @default.
- W4387675520 cites W4378976213 @default.
- W4387675520 doi "https://doi.org/10.1016/j.eswa.2023.122181" @default.
- W4387675520 hasPublicationYear "2023" @default.
- W4387675520 type Work @default.
- W4387675520 citedByCount "0" @default.
- W4387675520 crossrefType "journal-article" @default.
- W4387675520 hasAuthorship W4387675520A5048529571 @default.
- W4387675520 hasAuthorship W4387675520A5081227079 @default.
- W4387675520 hasBestOaLocation W43876755201 @default.
- W4387675520 hasConcept C106301342 @default.
- W4387675520 hasConcept C119857082 @default.
- W4387675520 hasConcept C121332964 @default.
- W4387675520 hasConcept C150899416 @default.
- W4387675520 hasConcept C154945302 @default.
- W4387675520 hasConcept C173608175 @default.
- W4387675520 hasConcept C201762086 @default.
- W4387675520 hasConcept C2776175482 @default.
- W4387675520 hasConcept C31258907 @default.
- W4387675520 hasConcept C35525427 @default.
- W4387675520 hasConcept C41008148 @default.
- W4387675520 hasConcept C62520636 @default.
- W4387675520 hasConcept C79403827 @default.
- W4387675520 hasConceptScore W4387675520C106301342 @default.
- W4387675520 hasConceptScore W4387675520C119857082 @default.
- W4387675520 hasConceptScore W4387675520C121332964 @default.
- W4387675520 hasConceptScore W4387675520C150899416 @default.
- W4387675520 hasConceptScore W4387675520C154945302 @default.
- W4387675520 hasConceptScore W4387675520C173608175 @default.
- W4387675520 hasConceptScore W4387675520C201762086 @default.
- W4387675520 hasConceptScore W4387675520C2776175482 @default.
- W4387675520 hasConceptScore W4387675520C31258907 @default.
- W4387675520 hasConceptScore W4387675520C35525427 @default.
- W4387675520 hasConceptScore W4387675520C41008148 @default.
- W4387675520 hasConceptScore W4387675520C62520636 @default.
- W4387675520 hasConceptScore W4387675520C79403827 @default.
- W4387675520 hasLocation W43876755201 @default.
- W4387675520 hasOpenAccess W4387675520 @default.
- W4387675520 hasPrimaryLocation W43876755201 @default.
- W4387675520 hasRelatedWork W1483130311 @default.
- W4387675520 hasRelatedWork W1577110157 @default.
- W4387675520 hasRelatedWork W1990093618 @default.
- W4387675520 hasRelatedWork W2349441905 @default.
- W4387675520 hasRelatedWork W2355007334 @default.
- W4387675520 hasRelatedWork W2357468538 @default.
- W4387675520 hasRelatedWork W2361044160 @default.
- W4387675520 hasRelatedWork W2390009783 @default.
- W4387675520 hasRelatedWork W2394461323 @default.
- W4387675520 hasRelatedWork W3201126466 @default.
- W4387675520 isParatext "false" @default.
- W4387675520 isRetracted "false" @default.
- W4387675520 workType "article" @default.