Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387675761> ?p ?o ?g. }
- W4387675761 endingPage "107854" @default.
- W4387675761 startingPage "107854" @default.
- W4387675761 abstract "Background and Objective: The internet of medical things is enhancing smart healthcare services using physical wearable sensor-based devices connected to the Internet. Machine learning techniques play an important role in the core of these services for remotely consulting patients thanks to the pattern recognition from on-device data, which is transferred to the central servers from local devices. However, transferring personally identifiable information data to servers could become a source for hackers to steal from, manipulate and perform illegal activities. Federated learning is a new branch of machine learning that creates directly training models from on-device data and aggregates these learned models on the servers without centralized data. Another way to protect data confidentiality on computer systems is data encryption. Data encryption transforms data into another form that only users with authority to a decryption key can read. In this work, we propose a novel method enabling preservation of client privacy and protection of client biomedical data from illegal hackers while transmitting through the internet. Methods: We propose a method applying 3-dimensional convolutional neural networks for human activity recognition using multiple sensory data. In order to protect the data, we apply the bitwise XOR operator encryption technique. Then, we extend our 3-dimensional convolutional neural network methods to both traditional federated learning and the federated learning based on multi-key homomorphic encryption using the proposed encrypting data. Results: Based on leave-one-out-cross-validation, the 3-dimensional method obtains an accuracy of 94.6% and of 94.9% (without data encrypting and without federated learning) tested on two different benchmarked datasets, Sport and DaLiAC respectively. Accuracy is decreased slightly to 89.5% (from 94.6% of the baseline) when we use the proposed encrypting data method. However, the encryption-data-based method still has a potential result compared to the state-of-the-art which only uses raw data. In addition, the proposed full federated learning scheme of this work shows that illegal persons who somehow can get the trained model transmitted via networks cannot infer the private result. Conclusions: This novel method for sensory data representation which translates temporal and frequency bio-signal values to voxel intensities that can encode 3-dimensionnal activity images. Secondly, the proposed 3-dimensional convolutional neural network methods outperform other deep-learning-based human activity recognition approaches. Finally, extensive experiments show the proposed data-encrypted federated learning approach can achieve feasibility in terms of efficiency in privacy preservation." @default.
- W4387675761 created "2023-10-17" @default.
- W4387675761 creator A5014357027 @default.
- W4387675761 creator A5020685545 @default.
- W4387675761 creator A5021288780 @default.
- W4387675761 creator A5032799266 @default.
- W4387675761 creator A5059877507 @default.
- W4387675761 date "2023-10-01" @default.
- W4387675761 modified "2023-10-17" @default.
- W4387675761 title "Extension of physical activity recognition with 3D CNN using encrypted multiple sensory data to federated learning based on multi-key homomorphic encryption" @default.
- W4387675761 cites W1595782221 @default.
- W4387675761 cites W1973285633 @default.
- W4387675761 cites W2002261403 @default.
- W4387675761 cites W2028017042 @default.
- W4387675761 cites W2089786220 @default.
- W4387675761 cites W2096680959 @default.
- W4387675761 cites W2123504417 @default.
- W4387675761 cites W2124609194 @default.
- W4387675761 cites W2148217011 @default.
- W4387675761 cites W2247607085 @default.
- W4387675761 cites W2270470215 @default.
- W4387675761 cites W2301358467 @default.
- W4387675761 cites W2319522456 @default.
- W4387675761 cites W2340025709 @default.
- W4387675761 cites W2550797816 @default.
- W4387675761 cites W2595331287 @default.
- W4387675761 cites W2600842288 @default.
- W4387675761 cites W2620996152 @default.
- W4387675761 cites W2623595444 @default.
- W4387675761 cites W2744088620 @default.
- W4387675761 cites W2760967785 @default.
- W4387675761 cites W2767979715 @default.
- W4387675761 cites W2768174108 @default.
- W4387675761 cites W2768214501 @default.
- W4387675761 cites W2774528011 @default.
- W4387675761 cites W2781091734 @default.
- W4387675761 cites W2781486669 @default.
- W4387675761 cites W2890077673 @default.
- W4387675761 cites W2892374186 @default.
- W4387675761 cites W2895429161 @default.
- W4387675761 cites W2896025697 @default.
- W4387675761 cites W2898836677 @default.
- W4387675761 cites W2901438495 @default.
- W4387675761 cites W2904167941 @default.
- W4387675761 cites W2906473494 @default.
- W4387675761 cites W2915863155 @default.
- W4387675761 cites W2947898397 @default.
- W4387675761 cites W2963456518 @default.
- W4387675761 cites W2985527074 @default.
- W4387675761 cites W2992937964 @default.
- W4387675761 cites W3045670331 @default.
- W4387675761 cites W3046507381 @default.
- W4387675761 cites W3085451980 @default.
- W4387675761 cites W3089184847 @default.
- W4387675761 cites W3091870957 @default.
- W4387675761 cites W3099128725 @default.
- W4387675761 cites W3100779497 @default.
- W4387675761 cites W3105357426 @default.
- W4387675761 cites W3157680283 @default.
- W4387675761 cites W3161133901 @default.
- W4387675761 cites W3171802458 @default.
- W4387675761 cites W3175192640 @default.
- W4387675761 cites W3183869907 @default.
- W4387675761 cites W3207310690 @default.
- W4387675761 cites W4205423013 @default.
- W4387675761 cites W4235485727 @default.
- W4387675761 cites W4280493273 @default.
- W4387675761 cites W4283735188 @default.
- W4387675761 cites W4386210931 @default.
- W4387675761 doi "https://doi.org/10.1016/j.cmpb.2023.107854" @default.
- W4387675761 hasPublicationYear "2023" @default.
- W4387675761 type Work @default.
- W4387675761 citedByCount "0" @default.
- W4387675761 crossrefType "journal-article" @default.
- W4387675761 hasAuthorship W4387675761A5014357027 @default.
- W4387675761 hasAuthorship W4387675761A5020685545 @default.
- W4387675761 hasAuthorship W4387675761A5021288780 @default.
- W4387675761 hasAuthorship W4387675761A5032799266 @default.
- W4387675761 hasAuthorship W4387675761A5059877507 @default.
- W4387675761 hasConcept C110875604 @default.
- W4387675761 hasConcept C119857082 @default.
- W4387675761 hasConcept C136764020 @default.
- W4387675761 hasConcept C147977885 @default.
- W4387675761 hasConcept C148730421 @default.
- W4387675761 hasConcept C154945302 @default.
- W4387675761 hasConcept C158338273 @default.
- W4387675761 hasConcept C166501710 @default.
- W4387675761 hasConcept C26517878 @default.
- W4387675761 hasConcept C31258907 @default.
- W4387675761 hasConcept C38652104 @default.
- W4387675761 hasConcept C41008148 @default.
- W4387675761 hasConcept C81363708 @default.
- W4387675761 hasConcept C93996380 @default.
- W4387675761 hasConceptScore W4387675761C110875604 @default.
- W4387675761 hasConceptScore W4387675761C119857082 @default.
- W4387675761 hasConceptScore W4387675761C136764020 @default.
- W4387675761 hasConceptScore W4387675761C147977885 @default.
- W4387675761 hasConceptScore W4387675761C148730421 @default.