Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387677248> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387677248 abstract "This study explains how a federated learning Convolutional Neural Network (CNN) model is used to diagnose the various degrees of beetroot leaf diseases. Beetroot crops are essential to the world's food systems, but several illnesses often affect their quality and productivity. To suggest a CNN model using federated learning to analyse data from several clients while preserving privacy for a quick and precise diagnosis. The method analyses the severity of the five stages of beetroot leaf diseases using a federated learning technique across several local clients to use precision, recall, F1-score, and accuracy as performance measurements. The review showed that performance had improved consistently for all customers. As an example, Client X had a prediction accuracy of 0.97, which increased gradually to 0.98 for both Client P and Client R. Additionally, as shown by the macro-average (94.15-94.17%), weighted average (94.67%), and micro-average (94.62%) scores for top-performing customers, the model's performance remained stable and resilient throughout all severity levels. The study's findings support using a CNN model built on federated learning for scalable, effective, and privacy-preserving disease control in agriculture. The promising results suggest the potential for extending such approaches to other agricultural products, considerably advancing efforts to ensure global food security. The research also showed that the CNN model could learn and develop continuously in a federated learning scenario, highlighting its usefulness as a dynamic tool that adapts to new illness patterns. A paradigm shift in the approach to combating agricultural illnesses and increasing food supply is heralded by this study, which reveals a potential junction between machine learning and agricultural disease management. The findings motivate more research into the model's adaptability to other crops and pests, enhancing its contribution to resilient and sustainable farming systems." @default.
- W4387677248 created "2023-10-17" @default.
- W4387677248 creator A5024147005 @default.
- W4387677248 creator A5047312965 @default.
- W4387677248 creator A5061558029 @default.
- W4387677248 creator A5090696503 @default.
- W4387677248 date "2023-09-20" @default.
- W4387677248 modified "2023-10-18" @default.
- W4387677248 title "Exploring a Novel Methodologies for Beetroot Leaf Disease Severity Prediction: Federated Learning and CNN" @default.
- W4387677248 cites W2014408679 @default.
- W4387677248 cites W2018057636 @default.
- W4387677248 cites W2036506445 @default.
- W4387677248 cites W2150804330 @default.
- W4387677248 cites W2580482113 @default.
- W4387677248 cites W3115760506 @default.
- W4387677248 cites W3154072362 @default.
- W4387677248 cites W3188533045 @default.
- W4387677248 cites W3210681193 @default.
- W4387677248 cites W3213695907 @default.
- W4387677248 cites W4285166623 @default.
- W4387677248 cites W4312386072 @default.
- W4387677248 cites W4316039544 @default.
- W4387677248 cites W4379874928 @default.
- W4387677248 cites W4383747515 @default.
- W4387677248 doi "https://doi.org/10.1109/icosec58147.2023.10276191" @default.
- W4387677248 hasPublicationYear "2023" @default.
- W4387677248 type Work @default.
- W4387677248 citedByCount "0" @default.
- W4387677248 crossrefType "proceedings-article" @default.
- W4387677248 hasAuthorship W4387677248A5024147005 @default.
- W4387677248 hasAuthorship W4387677248A5047312965 @default.
- W4387677248 hasAuthorship W4387677248A5061558029 @default.
- W4387677248 hasAuthorship W4387677248A5090696503 @default.
- W4387677248 hasConcept C108583219 @default.
- W4387677248 hasConcept C111472728 @default.
- W4387677248 hasConcept C118518473 @default.
- W4387677248 hasConcept C119857082 @default.
- W4387677248 hasConcept C124101348 @default.
- W4387677248 hasConcept C138885662 @default.
- W4387677248 hasConcept C139719470 @default.
- W4387677248 hasConcept C154945302 @default.
- W4387677248 hasConcept C162324750 @default.
- W4387677248 hasConcept C18903297 @default.
- W4387677248 hasConcept C204983608 @default.
- W4387677248 hasConcept C2779530757 @default.
- W4387677248 hasConcept C2992525071 @default.
- W4387677248 hasConcept C41008148 @default.
- W4387677248 hasConcept C48044578 @default.
- W4387677248 hasConcept C549605437 @default.
- W4387677248 hasConcept C77088390 @default.
- W4387677248 hasConcept C81363708 @default.
- W4387677248 hasConcept C81669768 @default.
- W4387677248 hasConcept C86803240 @default.
- W4387677248 hasConceptScore W4387677248C108583219 @default.
- W4387677248 hasConceptScore W4387677248C111472728 @default.
- W4387677248 hasConceptScore W4387677248C118518473 @default.
- W4387677248 hasConceptScore W4387677248C119857082 @default.
- W4387677248 hasConceptScore W4387677248C124101348 @default.
- W4387677248 hasConceptScore W4387677248C138885662 @default.
- W4387677248 hasConceptScore W4387677248C139719470 @default.
- W4387677248 hasConceptScore W4387677248C154945302 @default.
- W4387677248 hasConceptScore W4387677248C162324750 @default.
- W4387677248 hasConceptScore W4387677248C18903297 @default.
- W4387677248 hasConceptScore W4387677248C204983608 @default.
- W4387677248 hasConceptScore W4387677248C2779530757 @default.
- W4387677248 hasConceptScore W4387677248C2992525071 @default.
- W4387677248 hasConceptScore W4387677248C41008148 @default.
- W4387677248 hasConceptScore W4387677248C48044578 @default.
- W4387677248 hasConceptScore W4387677248C549605437 @default.
- W4387677248 hasConceptScore W4387677248C77088390 @default.
- W4387677248 hasConceptScore W4387677248C81363708 @default.
- W4387677248 hasConceptScore W4387677248C81669768 @default.
- W4387677248 hasConceptScore W4387677248C86803240 @default.
- W4387677248 hasLocation W43876772481 @default.
- W4387677248 hasOpenAccess W4387677248 @default.
- W4387677248 hasPrimaryLocation W43876772481 @default.
- W4387677248 hasRelatedWork W1838576100 @default.
- W4387677248 hasRelatedWork W2389214306 @default.
- W4387677248 hasRelatedWork W2777914285 @default.
- W4387677248 hasRelatedWork W2965083567 @default.
- W4387677248 hasRelatedWork W3013363440 @default.
- W4387677248 hasRelatedWork W4235240664 @default.
- W4387677248 hasRelatedWork W4283072613 @default.
- W4387677248 hasRelatedWork W4287823391 @default.
- W4387677248 hasRelatedWork W4293226380 @default.
- W4387677248 hasRelatedWork W4298221930 @default.
- W4387677248 isParatext "false" @default.
- W4387677248 isRetracted "false" @default.
- W4387677248 workType "article" @default.