Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387677294> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4387677294 abstract "Millions of individuals worldwide are afflicted with the common and possibly fatal ailment known as chronic kidney disease (CKD). By allowing for prompt diagnosis and care, early identification and precise prediction of CKD may greatly improve patient outcomes. Machine learning algorithms have become effective resources for forecasting illness outcomes based on patient data in recent years. In order to better predict CKD, this research compares three well-known machine learning algorithms—Random Forest, Decision Tree, and Ada Boost Classifier performance. The clinical and laboratory data from a cohort of CKD patients were gathered to create the dataset utilized in this investigation. Demographic data, medical history, vital signs, and the findings of laboratory tests are among the characteristics. To improve the prediction accuracy of these ML algorithms, K-Fold validation techniques is applied. The findings show that Random Forest, Decision Tree, and Ada Boost Classifier might be useful tools for the early diagnosis and prediction of CKD. Among these three the prediction accuracy of Random Forest Classifier is found 99.98% which is maximum among the three." @default.
- W4387677294 created "2023-10-17" @default.
- W4387677294 creator A5050754094 @default.
- W4387677294 creator A5091140620 @default.
- W4387677294 date "2023-09-20" @default.
- W4387677294 modified "2023-10-18" @default.
- W4387677294 title "Chronic Kidney Disease Prediction Using Random Forest, Decision Tree and Ada Boost Classifier" @default.
- W4387677294 cites W2754799147 @default.
- W4387677294 cites W2784081781 @default.
- W4387677294 cites W2786272318 @default.
- W4387677294 cites W2806333774 @default.
- W4387677294 cites W2937431376 @default.
- W4387677294 cites W2970562883 @default.
- W4387677294 cites W2996941103 @default.
- W4387677294 cites W3016979284 @default.
- W4387677294 cites W3047564199 @default.
- W4387677294 cites W3083333176 @default.
- W4387677294 cites W3094177185 @default.
- W4387677294 cites W4283015487 @default.
- W4387677294 cites W4319431271 @default.
- W4387677294 cites W4319718003 @default.
- W4387677294 cites W4320801794 @default.
- W4387677294 cites W4322710540 @default.
- W4387677294 cites W4324137383 @default.
- W4387677294 cites W4361829670 @default.
- W4387677294 cites W4366259393 @default.
- W4387677294 cites W4366502702 @default.
- W4387677294 cites W4372269100 @default.
- W4387677294 doi "https://doi.org/10.1109/icosec58147.2023.10276324" @default.
- W4387677294 hasPublicationYear "2023" @default.
- W4387677294 type Work @default.
- W4387677294 citedByCount "0" @default.
- W4387677294 crossrefType "proceedings-article" @default.
- W4387677294 hasAuthorship W4387677294A5050754094 @default.
- W4387677294 hasAuthorship W4387677294A5091140620 @default.
- W4387677294 hasConcept C119857082 @default.
- W4387677294 hasConcept C124101348 @default.
- W4387677294 hasConcept C126322002 @default.
- W4387677294 hasConcept C154945302 @default.
- W4387677294 hasConcept C169258074 @default.
- W4387677294 hasConcept C2778653478 @default.
- W4387677294 hasConcept C2779134260 @default.
- W4387677294 hasConcept C41008148 @default.
- W4387677294 hasConcept C5481197 @default.
- W4387677294 hasConcept C71924100 @default.
- W4387677294 hasConcept C72563966 @default.
- W4387677294 hasConcept C84525736 @default.
- W4387677294 hasConcept C95623464 @default.
- W4387677294 hasConceptScore W4387677294C119857082 @default.
- W4387677294 hasConceptScore W4387677294C124101348 @default.
- W4387677294 hasConceptScore W4387677294C126322002 @default.
- W4387677294 hasConceptScore W4387677294C154945302 @default.
- W4387677294 hasConceptScore W4387677294C169258074 @default.
- W4387677294 hasConceptScore W4387677294C2778653478 @default.
- W4387677294 hasConceptScore W4387677294C2779134260 @default.
- W4387677294 hasConceptScore W4387677294C41008148 @default.
- W4387677294 hasConceptScore W4387677294C5481197 @default.
- W4387677294 hasConceptScore W4387677294C71924100 @default.
- W4387677294 hasConceptScore W4387677294C72563966 @default.
- W4387677294 hasConceptScore W4387677294C84525736 @default.
- W4387677294 hasConceptScore W4387677294C95623464 @default.
- W4387677294 hasLocation W43876772941 @default.
- W4387677294 hasOpenAccess W4387677294 @default.
- W4387677294 hasPrimaryLocation W43876772941 @default.
- W4387677294 hasRelatedWork W1982169401 @default.
- W4387677294 hasRelatedWork W2356463514 @default.
- W4387677294 hasRelatedWork W2591672004 @default.
- W4387677294 hasRelatedWork W2889302474 @default.
- W4387677294 hasRelatedWork W4313289487 @default.
- W4387677294 hasRelatedWork W4317732970 @default.
- W4387677294 hasRelatedWork W4319437832 @default.
- W4387677294 hasRelatedWork W4321636153 @default.
- W4387677294 hasRelatedWork W4323294312 @default.
- W4387677294 hasRelatedWork W4366990902 @default.
- W4387677294 isParatext "false" @default.
- W4387677294 isRetracted "false" @default.
- W4387677294 workType "article" @default.