Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387677357> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4387677357 abstract "Water is consumed for a various purposes, together with agriculture, industrial, and drinking usage. The water quality has directly influences both the environment and human health. For effective management of water, the water quality index (WQI) remains as a critical indication. Current WQI methods evaluate water quality with many classifiers. Therefore, various approaches offer many elucidations for the same water property that contributed a significant amount of uncertainty in the accurate water quality categorization. The study aims to assess the performances of the water quality index (WQI) method for correctly classifying coastal water quality utilizing a newly devised technique. This study performs an Automated Groundwater Quality Index Classification using Adaptive Aquila Optimizer with Deep Learning (AGQIC-AAODL) technique on Thiruvallur district, India. In the presented AGQIC-AAODL technique, a three-stage process is involved such as data normalization, prediction, and AAO based hyperparameter tuning. At the primary stage, data normalization is performed for scaling the data into uniform format. The AGQIC-AAODL method applies multi-head bidirectional gated recurrent unit (MHBGRU) model for classification process. At the final stage, the AAO based hyperparameter tuning is applied for hyperparameter tuning process. The simulation outputs of the AGQIC-AAODL method were experimented on the WQI dataset. The overall comparison analysis reported the superior accomplishment of the AGQIC-AAODL method by means of various measures." @default.
- W4387677357 created "2023-10-17" @default.
- W4387677357 creator A5003768203 @default.
- W4387677357 creator A5006199451 @default.
- W4387677357 creator A5020229529 @default.
- W4387677357 date "2023-09-20" @default.
- W4387677357 modified "2023-10-18" @default.
- W4387677357 title "Automated Groundwater Quality Index Classification Using Adaptive Aquila Optimizer with Deep Learning" @default.
- W4387677357 cites W1965920041 @default.
- W4387677357 cites W2013341039 @default.
- W4387677357 cites W2042407016 @default.
- W4387677357 cites W2050807833 @default.
- W4387677357 cites W2760220824 @default.
- W4387677357 cites W2810397275 @default.
- W4387677357 cites W2901606966 @default.
- W4387677357 cites W2904258885 @default.
- W4387677357 cites W2997133808 @default.
- W4387677357 cites W3088582808 @default.
- W4387677357 cites W3092301554 @default.
- W4387677357 cites W3132903199 @default.
- W4387677357 cites W4284889717 @default.
- W4387677357 cites W4285055276 @default.
- W4387677357 cites W4309883414 @default.
- W4387677357 cites W4319593477 @default.
- W4387677357 cites W4323314522 @default.
- W4387677357 doi "https://doi.org/10.1109/icosec58147.2023.10275911" @default.
- W4387677357 hasPublicationYear "2023" @default.
- W4387677357 type Work @default.
- W4387677357 citedByCount "0" @default.
- W4387677357 crossrefType "proceedings-article" @default.
- W4387677357 hasAuthorship W4387677357A5003768203 @default.
- W4387677357 hasAuthorship W4387677357A5006199451 @default.
- W4387677357 hasAuthorship W4387677357A5020229529 @default.
- W4387677357 hasConcept C119857082 @default.
- W4387677357 hasConcept C124101348 @default.
- W4387677357 hasConcept C136886441 @default.
- W4387677357 hasConcept C144024400 @default.
- W4387677357 hasConcept C154945302 @default.
- W4387677357 hasConcept C18903297 @default.
- W4387677357 hasConcept C19165224 @default.
- W4387677357 hasConcept C2780797713 @default.
- W4387677357 hasConcept C41008148 @default.
- W4387677357 hasConcept C8642999 @default.
- W4387677357 hasConcept C86803240 @default.
- W4387677357 hasConcept C94124525 @default.
- W4387677357 hasConceptScore W4387677357C119857082 @default.
- W4387677357 hasConceptScore W4387677357C124101348 @default.
- W4387677357 hasConceptScore W4387677357C136886441 @default.
- W4387677357 hasConceptScore W4387677357C144024400 @default.
- W4387677357 hasConceptScore W4387677357C154945302 @default.
- W4387677357 hasConceptScore W4387677357C18903297 @default.
- W4387677357 hasConceptScore W4387677357C19165224 @default.
- W4387677357 hasConceptScore W4387677357C2780797713 @default.
- W4387677357 hasConceptScore W4387677357C41008148 @default.
- W4387677357 hasConceptScore W4387677357C8642999 @default.
- W4387677357 hasConceptScore W4387677357C86803240 @default.
- W4387677357 hasConceptScore W4387677357C94124525 @default.
- W4387677357 hasLocation W43876773571 @default.
- W4387677357 hasOpenAccess W4387677357 @default.
- W4387677357 hasPrimaryLocation W43876773571 @default.
- W4387677357 hasRelatedWork W2140186469 @default.
- W4387677357 hasRelatedWork W2602382373 @default.
- W4387677357 hasRelatedWork W2787698406 @default.
- W4387677357 hasRelatedWork W2963844355 @default.
- W4387677357 hasRelatedWork W3095116576 @default.
- W4387677357 hasRelatedWork W3198113463 @default.
- W4387677357 hasRelatedWork W4285827128 @default.
- W4387677357 hasRelatedWork W4301772239 @default.
- W4387677357 hasRelatedWork W4361251046 @default.
- W4387677357 hasRelatedWork W98577079 @default.
- W4387677357 isParatext "false" @default.
- W4387677357 isRetracted "false" @default.
- W4387677357 workType "article" @default.