Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387677452> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387677452 abstract "In contemporary years, image denoising has developed as an important investigation topic in the arena of image processing due to the increasing demand for high-quality images. Deep learning approaches have recently demonstrated outstanding results in a variety of image processing applications. In this research, a wavelet transform and deep learning-based method is suggested for image denoising. To successfully remove noise from an image, the suggested method is based on a hybrid network that combines wavelet transform with convolutional neural networks (CNNs). The suggested method is divided into two steps, one based on wavelet transforms and the other on deep learning. The input image is divided into wavelet coefficients at various scales and orientations in the wavelet transform-based stage. The noise is subsequently filtered out of the wavelet coefficients using a thresholding method. A CNN is taught to acquire the plotting among the noisy image and the denoised image during the deep learning-based step. The experimental results show that, in terms of both quantitative metrics and visual quality of the denoised images, the suggested strategy outperforms a number of state-of-the-art image denoising methods. The suggested method is also independent of the prior knowledge of the noise statistics and resilient to various types of noise. Overall, the suggested method successfully tackles image denoising by fusing the compensations of deep learning and wavelet transform. The suggested method could be used for a variety of computer vision applications that call for high-quality image denoising." @default.
- W4387677452 created "2023-10-17" @default.
- W4387677452 creator A5040238913 @default.
- W4387677452 creator A5044949471 @default.
- W4387677452 creator A5062255626 @default.
- W4387677452 creator A5092862997 @default.
- W4387677452 date "2023-09-20" @default.
- W4387677452 modified "2023-10-17" @default.
- W4387677452 title "An Effective Approach for Image Denoising Using Wavelet Transform Involving Deep Learning Techniques" @default.
- W4387677452 cites W2150081556 @default.
- W4387677452 cites W2242218935 @default.
- W4387677452 cites W2476548250 @default.
- W4387677452 cites W2508457857 @default.
- W4387677452 cites W2559264300 @default.
- W4387677452 cites W2963017889 @default.
- W4387677452 cites W2963814095 @default.
- W4387677452 cites W3016166592 @default.
- W4387677452 cites W4242059867 @default.
- W4387677452 doi "https://doi.org/10.1109/icosec58147.2023.10275904" @default.
- W4387677452 hasPublicationYear "2023" @default.
- W4387677452 type Work @default.
- W4387677452 citedByCount "0" @default.
- W4387677452 crossrefType "proceedings-article" @default.
- W4387677452 hasAuthorship W4387677452A5040238913 @default.
- W4387677452 hasAuthorship W4387677452A5044949471 @default.
- W4387677452 hasAuthorship W4387677452A5062255626 @default.
- W4387677452 hasAuthorship W4387677452A5092862997 @default.
- W4387677452 hasConcept C101453961 @default.
- W4387677452 hasConcept C108583219 @default.
- W4387677452 hasConcept C115961682 @default.
- W4387677452 hasConcept C153180895 @default.
- W4387677452 hasConcept C154945302 @default.
- W4387677452 hasConcept C163294075 @default.
- W4387677452 hasConcept C191178318 @default.
- W4387677452 hasConcept C196216189 @default.
- W4387677452 hasConcept C31972630 @default.
- W4387677452 hasConcept C41008148 @default.
- W4387677452 hasConcept C46286280 @default.
- W4387677452 hasConcept C47432892 @default.
- W4387677452 hasConcept C73339587 @default.
- W4387677452 hasConcept C81363708 @default.
- W4387677452 hasConcept C9417928 @default.
- W4387677452 hasConcept C99498987 @default.
- W4387677452 hasConceptScore W4387677452C101453961 @default.
- W4387677452 hasConceptScore W4387677452C108583219 @default.
- W4387677452 hasConceptScore W4387677452C115961682 @default.
- W4387677452 hasConceptScore W4387677452C153180895 @default.
- W4387677452 hasConceptScore W4387677452C154945302 @default.
- W4387677452 hasConceptScore W4387677452C163294075 @default.
- W4387677452 hasConceptScore W4387677452C191178318 @default.
- W4387677452 hasConceptScore W4387677452C196216189 @default.
- W4387677452 hasConceptScore W4387677452C31972630 @default.
- W4387677452 hasConceptScore W4387677452C41008148 @default.
- W4387677452 hasConceptScore W4387677452C46286280 @default.
- W4387677452 hasConceptScore W4387677452C47432892 @default.
- W4387677452 hasConceptScore W4387677452C73339587 @default.
- W4387677452 hasConceptScore W4387677452C81363708 @default.
- W4387677452 hasConceptScore W4387677452C9417928 @default.
- W4387677452 hasConceptScore W4387677452C99498987 @default.
- W4387677452 hasLocation W43876774521 @default.
- W4387677452 hasOpenAccess W4387677452 @default.
- W4387677452 hasPrimaryLocation W43876774521 @default.
- W4387677452 hasRelatedWork W1889651196 @default.
- W4387677452 hasRelatedWork W1918078477 @default.
- W4387677452 hasRelatedWork W2085792030 @default.
- W4387677452 hasRelatedWork W2101997086 @default.
- W4387677452 hasRelatedWork W2133587243 @default.
- W4387677452 hasRelatedWork W2181522976 @default.
- W4387677452 hasRelatedWork W233850645 @default.
- W4387677452 hasRelatedWork W2761243560 @default.
- W4387677452 hasRelatedWork W4233635293 @default.
- W4387677452 hasRelatedWork W4249722514 @default.
- W4387677452 isParatext "false" @default.
- W4387677452 isRetracted "false" @default.
- W4387677452 workType "article" @default.