Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387687445> ?p ?o ?g. }
- W4387687445 endingPage "103776" @default.
- W4387687445 startingPage "103776" @default.
- W4387687445 abstract "The design of optimal microstructures requires first, the identification of microstructural features that influence the material’s properties and, then, a search for a combination of these features that give rise to desired properties. For microstructures with complex morphologies, where the number of features is large, deriving these structure–property relationships is a challenging task. To address this challenge, we propose a generative machine learning model that can automatically identify low-dimensional descriptors of microstructural features that can be used to establish structure–property relationships. Based on this model, we present an integrated, data-driven framework for microstructure characterization, reconstruction, and design that is applicable to heterogeneous materials with polycrystalline microstructures. The proposed method is evaluated on a case study of designing dual-phase steel microstructures created with the multi-level Voronoi tessellation method. To this end, we train a variational autoencoder to identify the descriptors from these synthetic dual-phase steel microstructures. Subsequently, we employ Bayesian optimization to search for the optimal combination of the descriptors and generate microstructures with specific yield stress and low susceptibility for damage initiation. The presented results show how microstructure descriptors, determined by the variational autoencoder model, act as design variables for an optimization algorithm that identifies microstructures with desired properties." @default.
- W4387687445 created "2023-10-17" @default.
- W4387687445 creator A5048697280 @default.
- W4387687445 creator A5080332776 @default.
- W4387687445 date "2023-10-01" @default.
- W4387687445 modified "2023-10-18" @default.
- W4387687445 title "Inverse design of dual-phase steel microstructures using generative machine learning model and Bayesian optimization" @default.
- W4387687445 cites W1172251645 @default.
- W4387687445 cites W1498436455 @default.
- W4387687445 cites W1621613768 @default.
- W4387687445 cites W1651430845 @default.
- W4387687445 cites W1814146665 @default.
- W4387687445 cites W1928584567 @default.
- W4387687445 cites W1950640499 @default.
- W4387687445 cites W1983379330 @default.
- W4387687445 cites W1984990239 @default.
- W4387687445 cites W1986180240 @default.
- W4387687445 cites W1987091162 @default.
- W4387687445 cites W2036311246 @default.
- W4387687445 cites W2043978017 @default.
- W4387687445 cites W2053825107 @default.
- W4387687445 cites W2080657242 @default.
- W4387687445 cites W2100495367 @default.
- W4387687445 cites W2123306226 @default.
- W4387687445 cites W2150903702 @default.
- W4387687445 cites W2152014464 @default.
- W4387687445 cites W2163900516 @default.
- W4387687445 cites W2167735432 @default.
- W4387687445 cites W2201059364 @default.
- W4387687445 cites W2319854484 @default.
- W4387687445 cites W2338402873 @default.
- W4387687445 cites W2488660470 @default.
- W4387687445 cites W2535388113 @default.
- W4387687445 cites W2562637781 @default.
- W4387687445 cites W2603482245 @default.
- W4387687445 cites W2729087838 @default.
- W4387687445 cites W2789526630 @default.
- W4387687445 cites W2793598076 @default.
- W4387687445 cites W2798224450 @default.
- W4387687445 cites W2803170602 @default.
- W4387687445 cites W2883583109 @default.
- W4387687445 cites W2902212920 @default.
- W4387687445 cites W2907366958 @default.
- W4387687445 cites W2943952563 @default.
- W4387687445 cites W2944192730 @default.
- W4387687445 cites W2962940229 @default.
- W4387687445 cites W2963807552 @default.
- W4387687445 cites W2987542217 @default.
- W4387687445 cites W3037979004 @default.
- W4387687445 cites W3087999580 @default.
- W4387687445 cites W3089021334 @default.
- W4387687445 cites W3092894460 @default.
- W4387687445 cites W3098269892 @default.
- W4387687445 cites W3103145119 @default.
- W4387687445 cites W3107714972 @default.
- W4387687445 cites W3116749974 @default.
- W4387687445 cites W3126481307 @default.
- W4387687445 cites W3161459289 @default.
- W4387687445 cites W3175625381 @default.
- W4387687445 cites W3187506011 @default.
- W4387687445 cites W4281716556 @default.
- W4387687445 cites W4295953229 @default.
- W4387687445 cites W4376626852 @default.
- W4387687445 cites W760238900 @default.
- W4387687445 doi "https://doi.org/10.1016/j.ijplas.2023.103776" @default.
- W4387687445 hasPublicationYear "2023" @default.
- W4387687445 type Work @default.
- W4387687445 citedByCount "0" @default.
- W4387687445 crossrefType "journal-article" @default.
- W4387687445 hasAuthorship W4387687445A5048697280 @default.
- W4387687445 hasAuthorship W4387687445A5080332776 @default.
- W4387687445 hasConcept C101738243 @default.
- W4387687445 hasConcept C107673813 @default.
- W4387687445 hasConcept C11413529 @default.
- W4387687445 hasConcept C119857082 @default.
- W4387687445 hasConcept C126255220 @default.
- W4387687445 hasConcept C153180895 @default.
- W4387687445 hasConcept C154945302 @default.
- W4387687445 hasConcept C159985019 @default.
- W4387687445 hasConcept C160234255 @default.
- W4387687445 hasConcept C167966045 @default.
- W4387687445 hasConcept C192562407 @default.
- W4387687445 hasConcept C2778049539 @default.
- W4387687445 hasConcept C33923547 @default.
- W4387687445 hasConcept C39890363 @default.
- W4387687445 hasConcept C41008148 @default.
- W4387687445 hasConcept C50644808 @default.
- W4387687445 hasConcept C87976508 @default.
- W4387687445 hasConceptScore W4387687445C101738243 @default.
- W4387687445 hasConceptScore W4387687445C107673813 @default.
- W4387687445 hasConceptScore W4387687445C11413529 @default.
- W4387687445 hasConceptScore W4387687445C119857082 @default.
- W4387687445 hasConceptScore W4387687445C126255220 @default.
- W4387687445 hasConceptScore W4387687445C153180895 @default.
- W4387687445 hasConceptScore W4387687445C154945302 @default.
- W4387687445 hasConceptScore W4387687445C159985019 @default.
- W4387687445 hasConceptScore W4387687445C160234255 @default.
- W4387687445 hasConceptScore W4387687445C167966045 @default.