Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387687851> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4387687851 abstract "Representing graphs by their homomorphism counts has led to the beautiful theory of homomorphism indistinguishability in recent years. Moreover, homomorphism counts have promising applications in database theory and machine learning, where one would like to answer queries or classify graphs solely based on the representation of a graph $G$ as a finite vector of homomorphism counts from some fixed finite set of graphs to $G$. We study the computational complexity of the arguably most fundamental computational problem associated to these representations, the homomorphism reconstructability problem: given a finite sequence of graphs and a corresponding vector of natural numbers, decide whether there exists a graph $G$ that realises the given vector as the homomorphism counts from the given graphs. We show that this problem yields a natural example of an $mathsf{NP}^{#mathsf{P}}$-hard problem, which still can be $mathsf{NP}$-hard when restricted to a fixed number of input graphs of bounded treewidth and a fixed input vector of natural numbers, or alternatively, when restricted to a finite input set of graphs. We further show that, when restricted to a finite input set of graphs and given an upper bound on the order of the graph $G$ as additional input, the problem cannot be $mathsf{NP}$-hard unless $mathsf{P} = mathsf{NP}$. For this regime, we obtain partial positive results. We also investigate the problem's parameterised complexity and provide fpt-algorithms for the case that a single graph is given and that multiple graphs of the same order with subgraph instead of homomorphism counts are given." @default.
- W4387687851 created "2023-10-17" @default.
- W4387687851 creator A5051203741 @default.
- W4387687851 creator A5067198614 @default.
- W4387687851 creator A5086010577 @default.
- W4387687851 creator A5090515018 @default.
- W4387687851 creator A5092912332 @default.
- W4387687851 date "2023-10-13" @default.
- W4387687851 modified "2023-10-18" @default.
- W4387687851 title "The Complexity of Homomorphism Reconstructibility" @default.
- W4387687851 doi "https://doi.org/10.48550/arxiv.2310.09009" @default.
- W4387687851 hasPublicationYear "2023" @default.
- W4387687851 type Work @default.
- W4387687851 citedByCount "0" @default.
- W4387687851 crossrefType "posted-content" @default.
- W4387687851 hasAuthorship W4387687851A5051203741 @default.
- W4387687851 hasAuthorship W4387687851A5067198614 @default.
- W4387687851 hasAuthorship W4387687851A5086010577 @default.
- W4387687851 hasAuthorship W4387687851A5090515018 @default.
- W4387687851 hasAuthorship W4387687851A5092912332 @default.
- W4387687851 hasBestOaLocation W43876878511 @default.
- W4387687851 hasConcept C11413529 @default.
- W4387687851 hasConcept C114614502 @default.
- W4387687851 hasConcept C118615104 @default.
- W4387687851 hasConcept C132525143 @default.
- W4387687851 hasConcept C132569581 @default.
- W4387687851 hasConcept C134306372 @default.
- W4387687851 hasConcept C160446614 @default.
- W4387687851 hasConcept C162392398 @default.
- W4387687851 hasConcept C179799912 @default.
- W4387687851 hasConcept C203776342 @default.
- W4387687851 hasConcept C22149727 @default.
- W4387687851 hasConcept C33923547 @default.
- W4387687851 hasConcept C34388435 @default.
- W4387687851 hasConcept C4042151 @default.
- W4387687851 hasConcept C43517604 @default.
- W4387687851 hasConcept C7036158 @default.
- W4387687851 hasConceptScore W4387687851C11413529 @default.
- W4387687851 hasConceptScore W4387687851C114614502 @default.
- W4387687851 hasConceptScore W4387687851C118615104 @default.
- W4387687851 hasConceptScore W4387687851C132525143 @default.
- W4387687851 hasConceptScore W4387687851C132569581 @default.
- W4387687851 hasConceptScore W4387687851C134306372 @default.
- W4387687851 hasConceptScore W4387687851C160446614 @default.
- W4387687851 hasConceptScore W4387687851C162392398 @default.
- W4387687851 hasConceptScore W4387687851C179799912 @default.
- W4387687851 hasConceptScore W4387687851C203776342 @default.
- W4387687851 hasConceptScore W4387687851C22149727 @default.
- W4387687851 hasConceptScore W4387687851C33923547 @default.
- W4387687851 hasConceptScore W4387687851C34388435 @default.
- W4387687851 hasConceptScore W4387687851C4042151 @default.
- W4387687851 hasConceptScore W4387687851C43517604 @default.
- W4387687851 hasConceptScore W4387687851C7036158 @default.
- W4387687851 hasLocation W43876878511 @default.
- W4387687851 hasOpenAccess W4387687851 @default.
- W4387687851 hasPrimaryLocation W43876878511 @default.
- W4387687851 hasRelatedWork W1480846237 @default.
- W4387687851 hasRelatedWork W1511821218 @default.
- W4387687851 hasRelatedWork W1544821268 @default.
- W4387687851 hasRelatedWork W1548014395 @default.
- W4387687851 hasRelatedWork W1587078595 @default.
- W4387687851 hasRelatedWork W1726008105 @default.
- W4387687851 hasRelatedWork W2124176527 @default.
- W4387687851 hasRelatedWork W2175868772 @default.
- W4387687851 hasRelatedWork W239742334 @default.
- W4387687851 hasRelatedWork W3037533092 @default.
- W4387687851 isParatext "false" @default.
- W4387687851 isRetracted "false" @default.
- W4387687851 workType "article" @default.