Matches in SemOpenAlex for { <https://semopenalex.org/work/W44230476> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W44230476 abstract "Author(s): Colarusso, Mark | Abstract: The main results of this thesis describe and construct polarizations of regular adjoint orbits for certain classical groups. The thesis generalizes recent work of Bertram Kostant and Nolan Wallach (see [KW]). Kostant and Wallach construct polarizations of regular adjoint orbits for n x n complex matrices M(n). (Xin M(n) is said to be regular if it has a cyclic vector in C}n}.) They accomplish this by defining an n(n-1)/2 dimensional abelian complex Lie group A that acts on M(n) and stabilizes adjoint orbits. We study the A orbit structure on M(n) and generalize the construction to complex orthogonal Lie algebras mathfrak}so}(n). Since the A orbits of dimension n(n-1)/2 contained in a given regular adjoint orbit form the leaves of a polarization of an open submanifold of that orbit, we then obtain descriptions of these polarizations. For mathfrak}so}(n) we construct polarizations of certain regular semi-simple orbits. In the case of M(n), we study the action of A on matrices whose principal i x i submatrices in the top left hand corner (i x i cutoffs) are regular. We determine the A orbit structure of Zariski closed subvarieties of these matrices defined by each cutoff having a fixed characteristic polynomial. We relate the number of A orbits of maximal dimension n(n-1)/2 in such closed sets to the number of eigenvalues shared by adjacent cutoffs. The number of such A orbits always turns out to be a power of 2. We are also able to describe all of the A orbits of maximal dimension as orbits of Zariski connected algebraic groups acting on certain quasi-affine subvarieties of M(n). This work gives an explicit description of the leaves of polarizations of all regular adjoint orbits in M(n). In the case of the orthogonal Lie algebras, we construct a completely integrable system of commuting Hamiltonian vector fields on mathfrak}so}(n) using a classical analogue of the Gelfand-Zeitlin algebra of the universal enveloping algebra of mathfrak}so}(n) in the algebra of polynomials on mathfrak}so}(n). Integrating these vector fields gives rise to an action of C}d/2}, where d is the dimension of a regular adjoint orbit in an orthogonal Lie algebra. The action of C}d/2} stabilizes adjoint orbits. We then use the orbits of C}d/2} to construct polarizations of certain regular semi-simple adjoint orbits in mathfrak}so}(n). We realize the leaves of these polarizations as orbits of a Zariski connected algebraic group" @default.
- W44230476 created "2016-06-24" @default.
- W44230476 creator A5037564598 @default.
- W44230476 date "2007-01-01" @default.
- W44230476 modified "2023-09-27" @default.
- W44230476 title "The Gelfand -Zeitlin algebra and polarizations of regular adjoint orbits for classical groups" @default.
- W44230476 hasPublicationYear "2007" @default.
- W44230476 type Work @default.
- W44230476 sameAs 44230476 @default.
- W44230476 citedByCount "3" @default.
- W44230476 crossrefType "journal-article" @default.
- W44230476 hasAuthorship W44230476A5037564598 @default.
- W44230476 hasConcept C114614502 @default.
- W44230476 hasConcept C121332964 @default.
- W44230476 hasConcept C127413603 @default.
- W44230476 hasConcept C136170076 @default.
- W44230476 hasConcept C146978453 @default.
- W44230476 hasConcept C151300846 @default.
- W44230476 hasConcept C158693339 @default.
- W44230476 hasConcept C187915474 @default.
- W44230476 hasConcept C196644772 @default.
- W44230476 hasConcept C202444582 @default.
- W44230476 hasConcept C33676613 @default.
- W44230476 hasConcept C33923547 @default.
- W44230476 hasConcept C51568863 @default.
- W44230476 hasConcept C62520636 @default.
- W44230476 hasConceptScore W44230476C114614502 @default.
- W44230476 hasConceptScore W44230476C121332964 @default.
- W44230476 hasConceptScore W44230476C127413603 @default.
- W44230476 hasConceptScore W44230476C136170076 @default.
- W44230476 hasConceptScore W44230476C146978453 @default.
- W44230476 hasConceptScore W44230476C151300846 @default.
- W44230476 hasConceptScore W44230476C158693339 @default.
- W44230476 hasConceptScore W44230476C187915474 @default.
- W44230476 hasConceptScore W44230476C196644772 @default.
- W44230476 hasConceptScore W44230476C202444582 @default.
- W44230476 hasConceptScore W44230476C33676613 @default.
- W44230476 hasConceptScore W44230476C33923547 @default.
- W44230476 hasConceptScore W44230476C51568863 @default.
- W44230476 hasConceptScore W44230476C62520636 @default.
- W44230476 hasLocation W442304761 @default.
- W44230476 hasOpenAccess W44230476 @default.
- W44230476 hasPrimaryLocation W442304761 @default.
- W44230476 hasRelatedWork W1506425503 @default.
- W44230476 hasRelatedWork W1513115821 @default.
- W44230476 hasRelatedWork W1666025049 @default.
- W44230476 hasRelatedWork W1950916170 @default.
- W44230476 hasRelatedWork W1976526818 @default.
- W44230476 hasRelatedWork W2024717337 @default.
- W44230476 hasRelatedWork W2027051284 @default.
- W44230476 hasRelatedWork W2092505077 @default.
- W44230476 hasRelatedWork W2106566984 @default.
- W44230476 hasRelatedWork W2114744528 @default.
- W44230476 hasRelatedWork W2130465186 @default.
- W44230476 hasRelatedWork W2146165139 @default.
- W44230476 hasRelatedWork W2562869254 @default.
- W44230476 hasRelatedWork W2766119665 @default.
- W44230476 hasRelatedWork W2952435592 @default.
- W44230476 hasRelatedWork W2953052408 @default.
- W44230476 hasRelatedWork W3021259459 @default.
- W44230476 hasRelatedWork W3117177194 @default.
- W44230476 hasRelatedWork W3122136689 @default.
- W44230476 hasRelatedWork W1862070998 @default.
- W44230476 isParatext "false" @default.
- W44230476 isRetracted "false" @default.
- W44230476 magId "44230476" @default.
- W44230476 workType "article" @default.