Matches in SemOpenAlex for { <https://semopenalex.org/work/W44582849> ?p ?o ?g. }
- W44582849 endingPage "221" @default.
- W44582849 startingPage "205" @default.
- W44582849 abstract "The effect of an applied electric field on pendant and flowing drops (through a capillary) was studied by observing the droplet profile as a function of applied voltage. With pendant drops of hexadecane, application of the electric field caused a reduction in the apparent surface tension, γapp. In surrounding gases such as N2, CO2, and Ar, droplet profiles similar to those in air were observed. While gases such as He and Ne have low breakdown potentials, no change in droplet profile upon application of an electric field was detectable. The glow discharge in He was investigated for oil (insulator), water, glycerol, and a brass tip, for both positive and negative potentials. Conducting liquids such as water and glycerol permitted discharge to take place from the surface of the droplet, whereas insulating oils forced the discharge to occur at the metal tip, where the drop is attached. With flowing drops, the liquid conductivity was a major factor in the electrostatic disruption of the liquid surface. With insulating liquids such as paraffinic oil, no disruption occurred due to the lack of sufficient free ions in the bulk liquid. With conducting liquids such as water, very unstable streams were produced. Stable jets having a conical base were only produced with semiconducting liquids (nonpolar liquids with dissolved ionic materials). The cone angle at the base of the jet increased, whereas its length decreased with an increase in applied voltage. At higher voltages, secondary jets were produced from the primary one, whose number increased with an increase in the applied field. The effect of liquid conductivity, applied voltage, flow rate, and capillary diameter on the stability of jets was investigated by measuring the critical voltage, φc, at which transition from the pulsating mode to the stable jet mode occurred. By measuring the current carried by the jet, the charge-to-mass ratio could also be calculated. Some measurements of droplet size distribution were made using a practical sprayer and a particle measuring system for measuring droplet diameters in flight. These measurements were made as a function of applied voltage, conductivity, and flow rate. The results obtained clearly demonstrate the importance of applied voltage, liquid conductivity and flow rate in the formation of stable jets and the subsequent process of electrohydrodynamic atomization. At a given voltage and flow rate an optimum conductivity range is necessary for producing the most stable jet, the narrowest size distribution, and the smallest droplet size. This could be accounted for in terms of the electric forces acting on the liquid, which are related to the relaxation time of the liquid. The influence of flow rate on the production of stable jets and the subsequent atomization could also be understood in terms of the inertial and electrostatic forces which act in the same direction. At a given conductivity and voltage, stability is enhanced by increasing the flow rate, but at the expense of producing larger droplets." @default.
- W44582849 created "2016-06-24" @default.
- W44582849 creator A5002154871 @default.
- W44582849 creator A5004931665 @default.
- W44582849 creator A5018894389 @default.
- W44582849 date "1987-05-01" @default.
- W44582849 modified "2023-10-11" @default.
- W44582849 title "Investigations into the mechanisms of electrohydrodynamic spraying of liquids" @default.
- W44582849 cites W1706435611 @default.
- W44582849 cites W1876920319 @default.
- W44582849 cites W1976884690 @default.
- W44582849 cites W1978099940 @default.
- W44582849 cites W1991499077 @default.
- W44582849 cites W1999122534 @default.
- W44582849 cites W2007336011 @default.
- W44582849 cites W2026796856 @default.
- W44582849 cites W2028645283 @default.
- W44582849 cites W2028699424 @default.
- W44582849 cites W2047372127 @default.
- W44582849 cites W2054474845 @default.
- W44582849 cites W2065220591 @default.
- W44582849 cites W2143619048 @default.
- W44582849 doi "https://doi.org/10.1016/0021-9797(87)90185-8" @default.
- W44582849 hasPublicationYear "1987" @default.
- W44582849 type Work @default.
- W44582849 sameAs 44582849 @default.
- W44582849 citedByCount "295" @default.
- W44582849 countsByYear W445828492012 @default.
- W44582849 countsByYear W445828492013 @default.
- W44582849 countsByYear W445828492014 @default.
- W44582849 countsByYear W445828492015 @default.
- W44582849 countsByYear W445828492016 @default.
- W44582849 countsByYear W445828492017 @default.
- W44582849 countsByYear W445828492018 @default.
- W44582849 countsByYear W445828492019 @default.
- W44582849 countsByYear W445828492020 @default.
- W44582849 countsByYear W445828492021 @default.
- W44582849 countsByYear W445828492022 @default.
- W44582849 countsByYear W445828492023 @default.
- W44582849 crossrefType "journal-article" @default.
- W44582849 hasAuthorship W44582849A5002154871 @default.
- W44582849 hasAuthorship W44582849A5004931665 @default.
- W44582849 hasAuthorship W44582849A5018894389 @default.
- W44582849 hasConcept C113196181 @default.
- W44582849 hasConcept C119599485 @default.
- W44582849 hasConcept C121332964 @default.
- W44582849 hasConcept C127413603 @default.
- W44582849 hasConcept C131540310 @default.
- W44582849 hasConcept C134514944 @default.
- W44582849 hasConcept C147789679 @default.
- W44582849 hasConcept C159985019 @default.
- W44582849 hasConcept C165801399 @default.
- W44582849 hasConcept C17525397 @default.
- W44582849 hasConcept C178790620 @default.
- W44582849 hasConcept C181335627 @default.
- W44582849 hasConcept C185592680 @default.
- W44582849 hasConcept C192562407 @default.
- W44582849 hasConcept C212702 @default.
- W44582849 hasConcept C2780768339 @default.
- W44582849 hasConcept C2781345722 @default.
- W44582849 hasConcept C41008148 @default.
- W44582849 hasConcept C43617362 @default.
- W44582849 hasConcept C6025432 @default.
- W44582849 hasConcept C60799052 @default.
- W44582849 hasConcept C62520636 @default.
- W44582849 hasConcept C66322947 @default.
- W44582849 hasConcept C69990965 @default.
- W44582849 hasConcept C76155785 @default.
- W44582849 hasConcept C80487561 @default.
- W44582849 hasConcept C8892853 @default.
- W44582849 hasConcept C95238685 @default.
- W44582849 hasConcept C97355855 @default.
- W44582849 hasConceptScore W44582849C113196181 @default.
- W44582849 hasConceptScore W44582849C119599485 @default.
- W44582849 hasConceptScore W44582849C121332964 @default.
- W44582849 hasConceptScore W44582849C127413603 @default.
- W44582849 hasConceptScore W44582849C131540310 @default.
- W44582849 hasConceptScore W44582849C134514944 @default.
- W44582849 hasConceptScore W44582849C147789679 @default.
- W44582849 hasConceptScore W44582849C159985019 @default.
- W44582849 hasConceptScore W44582849C165801399 @default.
- W44582849 hasConceptScore W44582849C17525397 @default.
- W44582849 hasConceptScore W44582849C178790620 @default.
- W44582849 hasConceptScore W44582849C181335627 @default.
- W44582849 hasConceptScore W44582849C185592680 @default.
- W44582849 hasConceptScore W44582849C192562407 @default.
- W44582849 hasConceptScore W44582849C212702 @default.
- W44582849 hasConceptScore W44582849C2780768339 @default.
- W44582849 hasConceptScore W44582849C2781345722 @default.
- W44582849 hasConceptScore W44582849C41008148 @default.
- W44582849 hasConceptScore W44582849C43617362 @default.
- W44582849 hasConceptScore W44582849C6025432 @default.
- W44582849 hasConceptScore W44582849C60799052 @default.
- W44582849 hasConceptScore W44582849C62520636 @default.
- W44582849 hasConceptScore W44582849C66322947 @default.
- W44582849 hasConceptScore W44582849C69990965 @default.
- W44582849 hasConceptScore W44582849C76155785 @default.
- W44582849 hasConceptScore W44582849C80487561 @default.