Matches in SemOpenAlex for { <https://semopenalex.org/work/W44731043> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W44731043 abstract "We propose a decision-theoretic sparsification method for Gaussian process preference learning. This method overcomes the loss-insensitive nature of popular sparsification approaches such as the Informative Vector Machine (IVM). Instead of selecting a subset of users and items as inducing points based on uncertainty-reduction principles, our sparsification approach is underpinned by decision theory and directly incorporates the loss function inherent to the underlying preference learning problem. We show that by selecting different specifications of the loss function, the IVM's differential entropy criterion, a value of information criterion, and an upper confidence bound (UCB) criterion used in the bandit setting can all be recovered from our decision-theoretic framework. We refer to our method as the Valuable Vector Machine (VVM) as it selects the most useful items during sparsification to minimize the corresponding loss. We evaluate our approach on one synthetic and two real-world preference datasets, including one generated via Amazon Mechanical Turk and another collected from Facebook. Experiments show that variants of the VVM significantly outperform the IVM on all datasets under similar computational constraints." @default.
- W44731043 created "2016-06-24" @default.
- W44731043 creator A5023657363 @default.
- W44731043 creator A5028174137 @default.
- W44731043 creator A5076994062 @default.
- W44731043 date "2013-01-01" @default.
- W44731043 modified "2023-09-27" @default.
- W44731043 title "Decision-Theoretic Sparsification for Gaussian Process Preference Learning" @default.
- W44731043 cites W1569416391 @default.
- W44731043 cites W1665219543 @default.
- W44731043 cites W1965520710 @default.
- W44731043 cites W2001863269 @default.
- W44731043 cites W2030290736 @default.
- W44731043 cites W2150775571 @default.
- W44731043 cites W2168022998 @default.
- W44731043 cites W2168405694 @default.
- W44731043 cites W4211049957 @default.
- W44731043 doi "https://doi.org/10.1007/978-3-642-40991-2_33" @default.
- W44731043 hasPublicationYear "2013" @default.
- W44731043 type Work @default.
- W44731043 sameAs 44731043 @default.
- W44731043 citedByCount "0" @default.
- W44731043 crossrefType "book-chapter" @default.
- W44731043 hasAuthorship W44731043A5023657363 @default.
- W44731043 hasAuthorship W44731043A5028174137 @default.
- W44731043 hasAuthorship W44731043A5076994062 @default.
- W44731043 hasBestOaLocation W447310431 @default.
- W44731043 hasConcept C105795698 @default.
- W44731043 hasConcept C106301342 @default.
- W44731043 hasConcept C11413529 @default.
- W44731043 hasConcept C119857082 @default.
- W44731043 hasConcept C121332964 @default.
- W44731043 hasConcept C126255220 @default.
- W44731043 hasConcept C134306372 @default.
- W44731043 hasConcept C14036430 @default.
- W44731043 hasConcept C154945302 @default.
- W44731043 hasConcept C163716315 @default.
- W44731043 hasConcept C181204326 @default.
- W44731043 hasConcept C2781249084 @default.
- W44731043 hasConcept C33923547 @default.
- W44731043 hasConcept C41008148 @default.
- W44731043 hasConcept C61326573 @default.
- W44731043 hasConcept C62520636 @default.
- W44731043 hasConcept C77553402 @default.
- W44731043 hasConcept C78458016 @default.
- W44731043 hasConcept C86803240 @default.
- W44731043 hasConceptScore W44731043C105795698 @default.
- W44731043 hasConceptScore W44731043C106301342 @default.
- W44731043 hasConceptScore W44731043C11413529 @default.
- W44731043 hasConceptScore W44731043C119857082 @default.
- W44731043 hasConceptScore W44731043C121332964 @default.
- W44731043 hasConceptScore W44731043C126255220 @default.
- W44731043 hasConceptScore W44731043C134306372 @default.
- W44731043 hasConceptScore W44731043C14036430 @default.
- W44731043 hasConceptScore W44731043C154945302 @default.
- W44731043 hasConceptScore W44731043C163716315 @default.
- W44731043 hasConceptScore W44731043C181204326 @default.
- W44731043 hasConceptScore W44731043C2781249084 @default.
- W44731043 hasConceptScore W44731043C33923547 @default.
- W44731043 hasConceptScore W44731043C41008148 @default.
- W44731043 hasConceptScore W44731043C61326573 @default.
- W44731043 hasConceptScore W44731043C62520636 @default.
- W44731043 hasConceptScore W44731043C77553402 @default.
- W44731043 hasConceptScore W44731043C78458016 @default.
- W44731043 hasConceptScore W44731043C86803240 @default.
- W44731043 hasLocation W447310431 @default.
- W44731043 hasOpenAccess W44731043 @default.
- W44731043 hasPrimaryLocation W447310431 @default.
- W44731043 hasRelatedWork W1592227380 @default.
- W44731043 hasRelatedWork W1686335701 @default.
- W44731043 hasRelatedWork W1970036512 @default.
- W44731043 hasRelatedWork W1994829820 @default.
- W44731043 hasRelatedWork W2103850933 @default.
- W44731043 hasRelatedWork W2107551505 @default.
- W44731043 hasRelatedWork W2124216369 @default.
- W44731043 hasRelatedWork W2127499922 @default.
- W44731043 hasRelatedWork W2129735430 @default.
- W44731043 hasRelatedWork W2135863906 @default.
- W44731043 hasRelatedWork W2167257437 @default.
- W44731043 hasRelatedWork W2253188500 @default.
- W44731043 hasRelatedWork W2343245819 @default.
- W44731043 hasRelatedWork W2915951985 @default.
- W44731043 hasRelatedWork W2954750610 @default.
- W44731043 hasRelatedWork W2963691670 @default.
- W44731043 hasRelatedWork W3023075874 @default.
- W44731043 hasRelatedWork W3099855006 @default.
- W44731043 hasRelatedWork W3105462378 @default.
- W44731043 hasRelatedWork W3116494032 @default.
- W44731043 isParatext "false" @default.
- W44731043 isRetracted "false" @default.
- W44731043 magId "44731043" @default.
- W44731043 workType "book-chapter" @default.