Matches in SemOpenAlex for { <https://semopenalex.org/work/W44925013> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W44925013 abstract "The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues.On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions.The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion." @default.
- W44925013 created "2016-06-24" @default.
- W44925013 creator A5062716858 @default.
- W44925013 date "2013-04-12" @default.
- W44925013 modified "2023-09-23" @default.
- W44925013 title "Lesion detection and classification in breast cancer:evaluation of approaches based on morphological features,tracer kinetic modelling and semi-quantitative parameters inMR functional imaging (DCE-MRI)" @default.
- W44925013 doi "https://doi.org/10.6092/unibo/amsdottorato/5302" @default.
- W44925013 hasPublicationYear "2013" @default.
- W44925013 type Work @default.
- W44925013 sameAs 44925013 @default.
- W44925013 citedByCount "0" @default.
- W44925013 crossrefType "dissertation" @default.
- W44925013 hasAuthorship W44925013A5062716858 @default.
- W44925013 hasConcept C119857082 @default.
- W44925013 hasConcept C124101348 @default.
- W44925013 hasConcept C126838900 @default.
- W44925013 hasConcept C143409427 @default.
- W44925013 hasConcept C153180895 @default.
- W44925013 hasConcept C154945302 @default.
- W44925013 hasConcept C160633673 @default.
- W44925013 hasConcept C27438332 @default.
- W44925013 hasConcept C31601959 @default.
- W44925013 hasConcept C41008148 @default.
- W44925013 hasConcept C41727105 @default.
- W44925013 hasConcept C71924100 @default.
- W44925013 hasConcept C89600930 @default.
- W44925013 hasConceptScore W44925013C119857082 @default.
- W44925013 hasConceptScore W44925013C124101348 @default.
- W44925013 hasConceptScore W44925013C126838900 @default.
- W44925013 hasConceptScore W44925013C143409427 @default.
- W44925013 hasConceptScore W44925013C153180895 @default.
- W44925013 hasConceptScore W44925013C154945302 @default.
- W44925013 hasConceptScore W44925013C160633673 @default.
- W44925013 hasConceptScore W44925013C27438332 @default.
- W44925013 hasConceptScore W44925013C31601959 @default.
- W44925013 hasConceptScore W44925013C41008148 @default.
- W44925013 hasConceptScore W44925013C41727105 @default.
- W44925013 hasConceptScore W44925013C71924100 @default.
- W44925013 hasConceptScore W44925013C89600930 @default.
- W44925013 hasLocation W449250131 @default.
- W44925013 hasOpenAccess W44925013 @default.
- W44925013 hasPrimaryLocation W449250131 @default.
- W44925013 hasRelatedWork W129750013 @default.
- W44925013 hasRelatedWork W16797668 @default.
- W44925013 hasRelatedWork W1952596106 @default.
- W44925013 hasRelatedWork W1966954198 @default.
- W44925013 hasRelatedWork W1967551258 @default.
- W44925013 hasRelatedWork W1969653133 @default.
- W44925013 hasRelatedWork W1971521250 @default.
- W44925013 hasRelatedWork W2032505500 @default.
- W44925013 hasRelatedWork W2052098616 @default.
- W44925013 hasRelatedWork W2061690543 @default.
- W44925013 hasRelatedWork W2080099971 @default.
- W44925013 hasRelatedWork W2105724384 @default.
- W44925013 hasRelatedWork W2112407618 @default.
- W44925013 hasRelatedWork W2159181935 @default.
- W44925013 hasRelatedWork W2622346176 @default.
- W44925013 hasRelatedWork W2775779195 @default.
- W44925013 hasRelatedWork W2790590611 @default.
- W44925013 hasRelatedWork W2792121117 @default.
- W44925013 hasRelatedWork W3092343655 @default.
- W44925013 hasRelatedWork W3118399063 @default.
- W44925013 isParatext "false" @default.
- W44925013 isRetracted "false" @default.
- W44925013 magId "44925013" @default.
- W44925013 workType "dissertation" @default.