Matches in SemOpenAlex for { <https://semopenalex.org/work/W45835223> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W45835223 abstract "ABSTRACT Current spoken dialogue systems lack positive feedback such asbackchannels, which are common in human-human conversa-tions. To develop more natural human-computer interfaces, theinvestigation of backchannel-responses are indispensable. In thispaper, we propose a method for detecting the precise timing forbackchannel responses in Japanese and aim at incorporating suchmethod in future spoken dialogue systems. The proposed methodis based on machine learning technique with a variety of prosodicfeatures. It is shownto be effectivein automatically derivingrulesfor detecting the contexts of backchannels. The performance ofour method is considerably better than previous methods. 1. INTRODUCTION Many researchers have reported that people hesitate to talk withspokendialogue systems due to the lack of positivefeedback fromthe systems such as backchannels, which are common in human-human conversations [3, 6]. To develop more natural human-computer interfaces, the investigation of backchannel-responsemechanisms are indispensable. In this paper, we propose amethodfordetecting the precisetiming forbackchannel responsesin Japanese and aim at incorporating such method in future spo-ken dialogue systems.In the proposed method, the contexts for backchannels are de-tected by using only prosodic features such as fundamental fre-quency and energy, which are relatively easy to handle by currentspeech technology. In contrast to the existing methods, whichuse very limited number of features and hand-made heuristics, weemploy a machine learning method with a varietyof prosodic fea-tures which might be relevant to the detection of the backchannelcontext. It will be shown that our method is effective in automati-cally deriving rules for detecting the contextsof backchannels andthat it performs considerably better than previous methods.In Section 2, we review related works on backchannels inJapanese conversation and automatic detection of the timing forbackchannels. In Section 3, we describe the spoken dialogue cor-pus used in our study and provide our definition of backchannels.In Section 4, we conduct a psychological experiment in order tocategorize positive and negative contexts for backchannels whichare common to average humans. In Section 5, we obtain, by us-ing decision tree learning method, prosodic cues which best dis-criminate the positive and negative contexts for backchannels. InSection 6, we summarize the paper." @default.
- W45835223 created "2016-06-24" @default.
- W45835223 creator A5038454582 @default.
- W45835223 creator A5059432927 @default.
- W45835223 date "1998-11-30" @default.
- W45835223 modified "2023-09-25" @default.
- W45835223 title "Prosody-based detection of the context of backchannel responses" @default.
- W45835223 cites W1504694836 @default.
- W45835223 cites W1566669007 @default.
- W45835223 cites W1993869739 @default.
- W45835223 cites W1999025360 @default.
- W45835223 cites W2109730238 @default.
- W45835223 cites W2125055259 @default.
- W45835223 cites W2170983113 @default.
- W45835223 cites W2545100730 @default.
- W45835223 doi "https://doi.org/10.21437/icslp.1998-71" @default.
- W45835223 hasPublicationYear "1998" @default.
- W45835223 type Work @default.
- W45835223 sameAs 45835223 @default.
- W45835223 citedByCount "30" @default.
- W45835223 countsByYear W458352232012 @default.
- W45835223 countsByYear W458352232013 @default.
- W45835223 countsByYear W458352232014 @default.
- W45835223 countsByYear W458352232016 @default.
- W45835223 countsByYear W458352232020 @default.
- W45835223 countsByYear W458352232023 @default.
- W45835223 crossrefType "proceedings-article" @default.
- W45835223 hasAuthorship W45835223A5038454582 @default.
- W45835223 hasAuthorship W45835223A5059432927 @default.
- W45835223 hasConcept C107457646 @default.
- W45835223 hasConcept C154945302 @default.
- W45835223 hasConcept C166957645 @default.
- W45835223 hasConcept C204321447 @default.
- W45835223 hasConcept C2779343474 @default.
- W45835223 hasConcept C28490314 @default.
- W45835223 hasConcept C41008148 @default.
- W45835223 hasConcept C542774811 @default.
- W45835223 hasConcept C95457728 @default.
- W45835223 hasConceptScore W45835223C107457646 @default.
- W45835223 hasConceptScore W45835223C154945302 @default.
- W45835223 hasConceptScore W45835223C166957645 @default.
- W45835223 hasConceptScore W45835223C204321447 @default.
- W45835223 hasConceptScore W45835223C2779343474 @default.
- W45835223 hasConceptScore W45835223C28490314 @default.
- W45835223 hasConceptScore W45835223C41008148 @default.
- W45835223 hasConceptScore W45835223C542774811 @default.
- W45835223 hasConceptScore W45835223C95457728 @default.
- W45835223 hasLocation W458352231 @default.
- W45835223 hasOpenAccess W45835223 @default.
- W45835223 hasPrimaryLocation W458352231 @default.
- W45835223 hasRelatedWork W1483399002 @default.
- W45835223 hasRelatedWork W2293457016 @default.
- W45835223 hasRelatedWork W2322099345 @default.
- W45835223 hasRelatedWork W2351428524 @default.
- W45835223 hasRelatedWork W2368779261 @default.
- W45835223 hasRelatedWork W2392752672 @default.
- W45835223 hasRelatedWork W2789919619 @default.
- W45835223 hasRelatedWork W3169305685 @default.
- W45835223 hasRelatedWork W1551406738 @default.
- W45835223 hasRelatedWork W2610387714 @default.
- W45835223 isParatext "false" @default.
- W45835223 isRetracted "false" @default.
- W45835223 magId "45835223" @default.
- W45835223 workType "article" @default.