Matches in SemOpenAlex for { <https://semopenalex.org/work/W4630997> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4630997 endingPage "291" @default.
- W4630997 startingPage "277" @default.
- W4630997 abstract "Clinical information, stored over time, is a potentially rich source of data for clinical research. Knowledge discovery in databases (KDD), commonly known as data mining, is a process for pattern discovery and predictive modeling in large databases. KDD makes extensive use of data mining methods, automated processes, and algorithms that enable pattern recognition. Characteristically, data mining involves the use of machine learning methods developed in the domain of artificial intelligence. These methods have been applied to healthcare and biomedical data for a variety of purposes with good success and potential or realized clinical translation. Herein, the Fayyad model of knowledge discovery in databases is introduced. The steps of the process are described with select examples from clinical research informatics. These steps range from initial data selection to interpretation and evaluation. Commonly used data mining methods are surveyed: artificial neural networks, decision tree induction, support vector machines (kernel methods), association rule induction, and k-nearest neighbor. Methods for evaluating the models that result from the KDD process are closely linked to methods used in diagnostic medicine. These include the use of measures derived from a confusion matrix and receiver operating characteristic curve analysis. Data partitioning and model validation are critical aspects of evaluation. International efforts to develop and refine clinical data repositories are critically linked to the potential of these methods for developing new knowledge.KeywordsKnowledge discovery in databasesData miningArtificial neural networksSupport vector machinesDecision trees k-Nearest neighbor classificationClinical data repositories" @default.
- W4630997 created "2016-06-24" @default.
- W4630997 creator A5075670930 @default.
- W4630997 date "2012-01-01" @default.
- W4630997 modified "2023-09-24" @default.
- W4630997 title "Nonhypothesis-Driven Research: Data Mining and Knowledge Discovery" @default.
- W4630997 cites W1563088657 @default.
- W4630997 cites W1995341919 @default.
- W4630997 cites W2017999770 @default.
- W4630997 cites W2029426756 @default.
- W4630997 cites W2038138012 @default.
- W4630997 cites W2084341220 @default.
- W4630997 cites W2097822643 @default.
- W4630997 cites W2137999759 @default.
- W4630997 cites W2156909104 @default.
- W4630997 cites W2157825442 @default.
- W4630997 cites W2318707379 @default.
- W4630997 doi "https://doi.org/10.1007/978-1-84882-448-5_15" @default.
- W4630997 hasPublicationYear "2012" @default.
- W4630997 type Work @default.
- W4630997 sameAs 4630997 @default.
- W4630997 citedByCount "2" @default.
- W4630997 countsByYear W46309972012 @default.
- W4630997 countsByYear W46309972013 @default.
- W4630997 crossrefType "book-chapter" @default.
- W4630997 hasAuthorship W4630997A5075670930 @default.
- W4630997 hasConcept C105445830 @default.
- W4630997 hasConcept C111919701 @default.
- W4630997 hasConcept C119857082 @default.
- W4630997 hasConcept C120567893 @default.
- W4630997 hasConcept C12267149 @default.
- W4630997 hasConcept C124101348 @default.
- W4630997 hasConcept C138602881 @default.
- W4630997 hasConcept C154945302 @default.
- W4630997 hasConcept C2522767166 @default.
- W4630997 hasConcept C2776780472 @default.
- W4630997 hasConcept C41008148 @default.
- W4630997 hasConcept C50644808 @default.
- W4630997 hasConcept C84525736 @default.
- W4630997 hasConcept C98045186 @default.
- W4630997 hasConceptScore W4630997C105445830 @default.
- W4630997 hasConceptScore W4630997C111919701 @default.
- W4630997 hasConceptScore W4630997C119857082 @default.
- W4630997 hasConceptScore W4630997C120567893 @default.
- W4630997 hasConceptScore W4630997C12267149 @default.
- W4630997 hasConceptScore W4630997C124101348 @default.
- W4630997 hasConceptScore W4630997C138602881 @default.
- W4630997 hasConceptScore W4630997C154945302 @default.
- W4630997 hasConceptScore W4630997C2522767166 @default.
- W4630997 hasConceptScore W4630997C2776780472 @default.
- W4630997 hasConceptScore W4630997C41008148 @default.
- W4630997 hasConceptScore W4630997C50644808 @default.
- W4630997 hasConceptScore W4630997C84525736 @default.
- W4630997 hasConceptScore W4630997C98045186 @default.
- W4630997 hasLocation W46309971 @default.
- W4630997 hasOpenAccess W4630997 @default.
- W4630997 hasPrimaryLocation W46309971 @default.
- W4630997 hasRelatedWork W2084779923 @default.
- W4630997 hasRelatedWork W3127425528 @default.
- W4630997 hasRelatedWork W3210918776 @default.
- W4630997 hasRelatedWork W4205958290 @default.
- W4630997 hasRelatedWork W4229001893 @default.
- W4630997 hasRelatedWork W4285106639 @default.
- W4630997 hasRelatedWork W4320483443 @default.
- W4630997 hasRelatedWork W4361795583 @default.
- W4630997 hasRelatedWork W4630997 @default.
- W4630997 hasRelatedWork W66443818 @default.
- W4630997 isParatext "false" @default.
- W4630997 isRetracted "false" @default.
- W4630997 magId "4630997" @default.
- W4630997 workType "book-chapter" @default.