Matches in SemOpenAlex for { <https://semopenalex.org/work/W46524963> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W46524963 endingPage "88" @default.
- W46524963 startingPage "83" @default.
- W46524963 abstract "Abstract Semantic Web applications are dependent on the successful merging of a number of weakly-structured, disparate data sources. The process of integrating data can be very time consuming and difficult. Due to this level of complexity, soft computing methods have been frequently employed to assist in this process. This paper defines a novel approach of applying clustering techniques to assist in the merging of ontologies. For support of enterprise processes we provide consideration to terminological components as well as instance relationships. Here, instance-rich ontologies are likened to applications of web document clustering for the purpose of Semantic Web-based definition. Our methodology applies clustering to each ontology at both the concept and attribute levels to support the integration process. We view the consideration of both terms and instance data together as integral components for scaling up applications to support the Semantic Web. 1. Introduction The Semantic Web will only reach its highest potential after every associated data source is presented within a single common language. This common language is dependent on the integration of ontologies. By definition, ontologies are regarded as an abstraction of a conceptualization containing explicitly defined concepts and associated relations (Gruber 1992). By the merging of the concepts, we intend to support Semantic Web applications through reduction of redundancy. Since scaling such applications to industrial levels is a substantial task, it will be necessary to establish both methods and associated metrics in order to determine similarity in our data source. Our primary focus is to utilize Semantic Web techniques to support the integration of data. We view enterprise integration as the study of an organization and relating each of them to another via a focus on the organizational process, application, data and networks (Maule and Gallup 2007). Ontologies are applied to the enterprise, by creating a single layer of data which resides on top of established (legacy) data sources with existing vocabularies. On top of this newly integrated layer lies potential development of more powerful applications than previously supported. Such applications will be able to explore the breadth of company data that was not previously available. In large scale legacy applications, there are substantial amounts of data associated with each individual concept. This data can present a substantial opportunity in terms of assisting in the merging process. In development of this layer of data, an associated methodology is presented with our example in order to assist in the complete translation of data. Here, we apply our decision process to drive the development of rules which will support the translations of our potential ontologies (Ostrowski 2007). We view our process and methodology to be a semi-automatic approach to the merging process. In our approach, metrics are established for the knowledge at both the conceptual and attribute level. Making comparisons between enterprise instance data and web based content, we apply clustering for the support of the analysis process for the eventual translation of ontologies. Through the evaluation of similarities in our data, we hope to determine a common reference point for knowledge-based inference applications. We derive this approach at the conceptual level as related to instance based data. In this paper, we present the application of text clustering to merging ontologies. Our approach assists in integration of legacy based applications within the enterprise environment. In Section Two, we present background information concerning the merging of ontologies. In Section Three we define our process and methodology. In Section Four, we present a paired-down example of the three separate ontologies to the application of our technique. In Section Five, conclusions are provided." @default.
- W46524963 created "2016-06-24" @default.
- W46524963 creator A5005611043 @default.
- W46524963 creator A5027523422 @default.
- W46524963 date "2008-01-01" @default.
- W46524963 modified "2023-09-27" @default.
- W46524963 title "Enterprise Ontology Merging for the Semantic Web." @default.
- W46524963 cites W144732048 @default.
- W46524963 cites W1519025458 @default.
- W46524963 cites W1599399636 @default.
- W46524963 cites W1604987629 @default.
- W46524963 cites W1853588847 @default.
- W46524963 cites W1972425044 @default.
- W46524963 cites W2002599608 @default.
- W46524963 cites W2022365265 @default.
- W46524963 cites W2048825579 @default.
- W46524963 cites W2095621389 @default.
- W46524963 cites W2131249976 @default.
- W46524963 cites W2135905581 @default.
- W46524963 cites W2136484272 @default.
- W46524963 cites W2144877662 @default.
- W46524963 cites W2620819813 @default.
- W46524963 cites W2621034452 @default.
- W46524963 hasPublicationYear "2008" @default.
- W46524963 type Work @default.
- W46524963 sameAs 46524963 @default.
- W46524963 citedByCount "2" @default.
- W46524963 crossrefType "journal-article" @default.
- W46524963 hasAuthorship W46524963A5005611043 @default.
- W46524963 hasAuthorship W46524963A5027523422 @default.
- W46524963 hasConcept C111472728 @default.
- W46524963 hasConcept C138885662 @default.
- W46524963 hasConcept C148792806 @default.
- W46524963 hasConcept C167379230 @default.
- W46524963 hasConcept C2129575 @default.
- W46524963 hasConcept C22550185 @default.
- W46524963 hasConcept C23123220 @default.
- W46524963 hasConcept C25810664 @default.
- W46524963 hasConcept C41008148 @default.
- W46524963 hasConcept C534406577 @default.
- W46524963 hasConceptScore W46524963C111472728 @default.
- W46524963 hasConceptScore W46524963C138885662 @default.
- W46524963 hasConceptScore W46524963C148792806 @default.
- W46524963 hasConceptScore W46524963C167379230 @default.
- W46524963 hasConceptScore W46524963C2129575 @default.
- W46524963 hasConceptScore W46524963C22550185 @default.
- W46524963 hasConceptScore W46524963C23123220 @default.
- W46524963 hasConceptScore W46524963C25810664 @default.
- W46524963 hasConceptScore W46524963C41008148 @default.
- W46524963 hasConceptScore W46524963C534406577 @default.
- W46524963 hasLocation W465249631 @default.
- W46524963 hasOpenAccess W46524963 @default.
- W46524963 hasPrimaryLocation W465249631 @default.
- W46524963 hasRelatedWork W1480825649 @default.
- W46524963 hasRelatedWork W1487102159 @default.
- W46524963 hasRelatedWork W2185990190 @default.
- W46524963 hasRelatedWork W2225512159 @default.
- W46524963 hasRelatedWork W2349489931 @default.
- W46524963 hasRelatedWork W2353764177 @default.
- W46524963 hasRelatedWork W2355823470 @default.
- W46524963 hasRelatedWork W2400528787 @default.
- W46524963 hasRelatedWork W2531211629 @default.
- W46524963 hasRelatedWork W2610823427 @default.
- W46524963 hasRelatedWork W2611868731 @default.
- W46524963 hasRelatedWork W2802084396 @default.
- W46524963 hasRelatedWork W2885691855 @default.
- W46524963 hasRelatedWork W2888835540 @default.
- W46524963 hasRelatedWork W2912659123 @default.
- W46524963 hasRelatedWork W2963929059 @default.
- W46524963 hasRelatedWork W44858653 @default.
- W46524963 hasRelatedWork W67033782 @default.
- W46524963 hasRelatedWork W2183626957 @default.
- W46524963 hasRelatedWork W2944673571 @default.
- W46524963 isParatext "false" @default.
- W46524963 isRetracted "false" @default.
- W46524963 magId "46524963" @default.
- W46524963 workType "article" @default.