Matches in SemOpenAlex for { <https://semopenalex.org/work/W46785428> ?p ?o ?g. }
- W46785428 abstract "Footbridge vibration has received much attention in recent years. However, stochastic models for crowd loading are not common, and estimation of crowd-induced vibration is typically done through enhancement factors applied to single pedestrian loading models. This work compares two such models, a moving force model and a spring-mass-damper model (SMD). Typical ranges for various pedestrian parameters are examined, and it is found that the pacing frequency has by far the greatest influence on bridge vibration response. It is also found that the magnitude of the response for pacing frequencies near the bridge natural frequency is lower for the SMD model, but otherwise the results prove similar. This suggests that moving SMD models may be more suitable than moving force models when the bridge natural frequency is in the critical frequency range. 2 EVACES 2011 – Experimental Vibration Analysis for Civil Engineering Structures (2011) noted that several recently published design guidelines, while adopting a similar general approach, all differed in the input parameters used even for these moving force models and that the results derived from applying each of the guides to a benchmark structure varied by a factor of approximately four. It has further been acknowledged for a long time that there is a need for a probabilistic approach to pedestrian loading (Matsumoto et al, 1978; Wheeler, 1982). Despite this, design codes such as BS 5400 (1978, 2006) and Eurocode 5 (EN 1995-2:2004) use deterministic moving force models to predict the response of a single pedestrian. Zivanovic (2006) stated that these models are commonly unable to accurately predict the response of a bridge due to a single pedestrian and usually overestimate it significantly. This inevitably leads to overestimation of the crowd response if enhancement factors are used in conjunction with moving force models. Archbold (2008) also found the moving force model to be conservative as it does not consider interaction between the pedestrian and the moving bridge surface, while Clemente et al (2010) added that if the interaction between the pedestrian and the bridge is to be considered, the pedestrians should be modelled as ‘biological oscillators’. 1.2 Approach of this work In order to model the interaction between a pedestrian and the bridge surface, the authors have employed a moving spring mass damper (SMD) model to represent a single pedestrian (Caprani et al, 2011). This single degree of freedom SMD model captures changes in vertical forces applied to vibrating bridge surfaces. This SMD model is then moved across an idealized bridge at a velocity derived from a combination of pacing frequency and step length. The bridge used in the model is a simply-supported beam, chosen to be susceptible to excitation from typical pedestrian pacing rates. To model the footfall force, a time-varying harmonic force is applied to the pedestrian mass, as proposed by Fanning et al (2005). Input parameters for this model include pedestrian mass, step length, pacing frequency, pedestrian stiffness and damping properties associated with the pedestrian model. The aim of the work reported herein is to determine the sensitivity of the numerical models and estimated acceleration levels induced in the bridge to a range of input parameters related to the movement of the crossing pedestrians. The results from the SMD pedestrian model are thus compared to those estimated using the conventional moving force model. 2 USE OF SMD MODELS TO REPRESENT HUMAN LOADING 2.1 Human leg stiffness Rapoport et al (2003) stated that in repetitive physical activity, such as running, hopping and trotting, a subject bounces on the ground in a spring-like manner. Geyer et al (2006) state that walking is also a bouncing gait. This is due to knee, ankle and hip flexure throughout the gait cycle (Rapoport et al, 2003; Lebiedowska et al, 2009). Blum et al (2009) stated that leg stiffness is a key parameter of modelling legged locomotion. Lee and Farley (1998) and Geyer et al (2006) represented the human leg as a compliant spring-mass model while running and walking, respectively. Rapoport et al (2003) stated that constant mechanical stiffness may not be applicable to the human leg as joint stiffness is nonlinear in nature as damping may be present and as a result, a model which accounts for this damping may improve the model predictions Lee and Farley (1998) acknowledged that spring and damping elements have been incorporated into the legs of some models of walking in order to match ground reaction force (GRF) patterns observed in human walking. They report that the values used in these models are generally higher (kP =12-35.5 kN/m) than the leg stiffness values reported for normal walking (kP ≈11 kN/m). Geyer et al (2006) stated that these models are too complex to serve as conceptual models. The authors reference Dickinson et al (2000) and Srinivasan and Ruina (2005) as stating that, despite being inaccurate, the stiff-legged motion remains the mechanical concept for a walking gait. Geyer et al (2006) themselves state that not stiff but compliant legs are fundamental to the walking gait." @default.
- W46785428 created "2016-06-24" @default.
- W46785428 creator A5004376222 @default.
- W46785428 creator A5018180930 @default.
- W46785428 creator A5046669191 @default.
- W46785428 creator A5061211410 @default.
- W46785428 date "2011-01-01" @default.
- W46785428 modified "2023-09-23" @default.
- W46785428 title "A Parametric Study of Pedestrian Vertical Force Models for Dynamic Analysis of Footbridges" @default.
- W46785428 cites W1502820664 @default.
- W46785428 cites W1590608460 @default.
- W46785428 cites W1656031401 @default.
- W46785428 cites W1971925646 @default.
- W46785428 cites W1985900234 @default.
- W46785428 cites W2009317155 @default.
- W46785428 cites W2013324238 @default.
- W46785428 cites W2053086280 @default.
- W46785428 cites W2093937828 @default.
- W46785428 cites W2110218912 @default.
- W46785428 cites W2128752569 @default.
- W46785428 cites W2154741100 @default.
- W46785428 cites W2157677005 @default.
- W46785428 cites W2163294982 @default.
- W46785428 cites W2346747136 @default.
- W46785428 cites W2495022076 @default.
- W46785428 cites W2615664088 @default.
- W46785428 cites W2924394421 @default.
- W46785428 cites W3197782314 @default.
- W46785428 cites W3189172605 @default.
- W46785428 doi "https://doi.org/10.21427/d79f8h" @default.
- W46785428 hasPublicationYear "2011" @default.
- W46785428 type Work @default.
- W46785428 sameAs 46785428 @default.
- W46785428 citedByCount "1" @default.
- W46785428 countsByYear W467854282015 @default.
- W46785428 crossrefType "journal-article" @default.
- W46785428 hasAuthorship W46785428A5004376222 @default.
- W46785428 hasAuthorship W46785428A5018180930 @default.
- W46785428 hasAuthorship W46785428A5046669191 @default.
- W46785428 hasAuthorship W46785428A5061211410 @default.
- W46785428 hasConcept C100776233 @default.
- W46785428 hasConcept C105795698 @default.
- W46785428 hasConcept C117251300 @default.
- W46785428 hasConcept C121332964 @default.
- W46785428 hasConcept C126322002 @default.
- W46785428 hasConcept C127413603 @default.
- W46785428 hasConcept C146978453 @default.
- W46785428 hasConcept C198394728 @default.
- W46785428 hasConcept C204323151 @default.
- W46785428 hasConcept C22212356 @default.
- W46785428 hasConcept C24890656 @default.
- W46785428 hasConcept C2777113093 @default.
- W46785428 hasConcept C33923547 @default.
- W46785428 hasConcept C41008148 @default.
- W46785428 hasConcept C66938386 @default.
- W46785428 hasConcept C71924100 @default.
- W46785428 hasConcept C78736273 @default.
- W46785428 hasConceptScore W46785428C100776233 @default.
- W46785428 hasConceptScore W46785428C105795698 @default.
- W46785428 hasConceptScore W46785428C117251300 @default.
- W46785428 hasConceptScore W46785428C121332964 @default.
- W46785428 hasConceptScore W46785428C126322002 @default.
- W46785428 hasConceptScore W46785428C127413603 @default.
- W46785428 hasConceptScore W46785428C146978453 @default.
- W46785428 hasConceptScore W46785428C198394728 @default.
- W46785428 hasConceptScore W46785428C204323151 @default.
- W46785428 hasConceptScore W46785428C22212356 @default.
- W46785428 hasConceptScore W46785428C24890656 @default.
- W46785428 hasConceptScore W46785428C2777113093 @default.
- W46785428 hasConceptScore W46785428C33923547 @default.
- W46785428 hasConceptScore W46785428C41008148 @default.
- W46785428 hasConceptScore W46785428C66938386 @default.
- W46785428 hasConceptScore W46785428C71924100 @default.
- W46785428 hasConceptScore W46785428C78736273 @default.
- W46785428 hasLocation W467854281 @default.
- W46785428 hasOpenAccess W46785428 @default.
- W46785428 hasPrimaryLocation W467854281 @default.
- W46785428 hasRelatedWork W1590608460 @default.
- W46785428 hasRelatedWork W1600929531 @default.
- W46785428 hasRelatedWork W2002352811 @default.
- W46785428 hasRelatedWork W2009317155 @default.
- W46785428 hasRelatedWork W2028040197 @default.
- W46785428 hasRelatedWork W2045383611 @default.
- W46785428 hasRelatedWork W2080029106 @default.
- W46785428 hasRelatedWork W2081874184 @default.
- W46785428 hasRelatedWork W2107649111 @default.
- W46785428 hasRelatedWork W2109627947 @default.
- W46785428 hasRelatedWork W2125911328 @default.
- W46785428 hasRelatedWork W2146141241 @default.
- W46785428 hasRelatedWork W2151839675 @default.
- W46785428 hasRelatedWork W2186003417 @default.
- W46785428 hasRelatedWork W2738720595 @default.
- W46785428 hasRelatedWork W2764524399 @default.
- W46785428 hasRelatedWork W2942413836 @default.
- W46785428 hasRelatedWork W562292147 @default.
- W46785428 hasRelatedWork W795539984 @default.
- W46785428 hasRelatedWork W816894294 @default.
- W46785428 isParatext "false" @default.
- W46785428 isRetracted "false" @default.
- W46785428 magId "46785428" @default.