Matches in SemOpenAlex for { <https://semopenalex.org/work/W47137038> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W47137038 abstract "This report discusses how soft discretization can be implemented to train a discrete Bayesian Network directly from continuous data. The method consists of a soft discretization step that converts the continuous variables of the training cases into soft evidence, followe d by a suitable parameter learning algorithm for the Bayesian Network. The learning algorithm is a modificati on of the Maximum Likelihood Estimation algorithm which is modified to accept soft evidence as input. We also discuss how to use soft discretization for inference and how to convert the inference results from the discrete network to meaningful continuous output values. Most literature on the use of soft discretization for Bayesi an Networks proposes to use fuzzy set theory which is based on membership functions. Our approach goes back one step further and starts out with a probability density function that spreads the influence of a continuous variable to its neighbors, followed by a discretization step. Thus our approach to soft discreti zation is based on probability theory, rather than fuzzy set theory. We then show an interesting connection between these approaches. Namely, a membership function can be generated from the probability density function through convolution, yielding a set of probability-based membership functions. Prime applications of this method include any system with limited training data whose underlying mechanism is continuous in nature. These types of applications are common in the natural sciences and medicine. Using the continuity of the system, i.e. the fact t hat neighboring states in a continuous system are related to each other, we hope that soft discretization c an yield more robust and more accurate models from small sample sizes. This report describes the method in enough detail to allow anyone to implement it themselves. Preliminary tests indicate increased robus tness, but extensive tests of the performance of the new models in comparison to traditional models have yet to be performed." @default.
- W47137038 created "2016-06-24" @default.
- W47137038 creator A5082309905 @default.
- W47137038 date "2009-09-22" @default.
- W47137038 modified "2023-09-22" @default.
- W47137038 title "A Probability-Based Approach to Soft Discretization for Bayesian Networks" @default.
- W47137038 cites W1489773040 @default.
- W47137038 cites W1543205541 @default.
- W47137038 cites W1589037681 @default.
- W47137038 cites W16433438 @default.
- W47137038 cites W1755360231 @default.
- W47137038 cites W1837398424 @default.
- W47137038 cites W1965310017 @default.
- W47137038 cites W2000641221 @default.
- W47137038 cites W2050050052 @default.
- W47137038 cites W2125418972 @default.
- W47137038 cites W2137533737 @default.
- W47137038 cites W2155885590 @default.
- W47137038 cites W2160415809 @default.
- W47137038 cites W2167483621 @default.
- W47137038 cites W2170069318 @default.
- W47137038 cites W2764229622 @default.
- W47137038 cites W2912565176 @default.
- W47137038 hasPublicationYear "2009" @default.
- W47137038 type Work @default.
- W47137038 sameAs 47137038 @default.
- W47137038 citedByCount "5" @default.
- W47137038 countsByYear W471370382012 @default.
- W47137038 countsByYear W471370382013 @default.
- W47137038 crossrefType "journal-article" @default.
- W47137038 hasAuthorship W47137038A5082309905 @default.
- W47137038 hasConcept C105427703 @default.
- W47137038 hasConcept C105795698 @default.
- W47137038 hasConcept C107673813 @default.
- W47137038 hasConcept C11413529 @default.
- W47137038 hasConcept C126148662 @default.
- W47137038 hasConcept C134306372 @default.
- W47137038 hasConcept C149441793 @default.
- W47137038 hasConcept C154945302 @default.
- W47137038 hasConcept C160234255 @default.
- W47137038 hasConcept C197055811 @default.
- W47137038 hasConcept C2776214188 @default.
- W47137038 hasConcept C33724603 @default.
- W47137038 hasConcept C33923547 @default.
- W47137038 hasConcept C41008148 @default.
- W47137038 hasConcept C73000952 @default.
- W47137038 hasConceptScore W47137038C105427703 @default.
- W47137038 hasConceptScore W47137038C105795698 @default.
- W47137038 hasConceptScore W47137038C107673813 @default.
- W47137038 hasConceptScore W47137038C11413529 @default.
- W47137038 hasConceptScore W47137038C126148662 @default.
- W47137038 hasConceptScore W47137038C134306372 @default.
- W47137038 hasConceptScore W47137038C149441793 @default.
- W47137038 hasConceptScore W47137038C154945302 @default.
- W47137038 hasConceptScore W47137038C160234255 @default.
- W47137038 hasConceptScore W47137038C197055811 @default.
- W47137038 hasConceptScore W47137038C2776214188 @default.
- W47137038 hasConceptScore W47137038C33724603 @default.
- W47137038 hasConceptScore W47137038C33923547 @default.
- W47137038 hasConceptScore W47137038C41008148 @default.
- W47137038 hasConceptScore W47137038C73000952 @default.
- W47137038 hasLocation W471370381 @default.
- W47137038 hasOpenAccess W47137038 @default.
- W47137038 hasPrimaryLocation W471370381 @default.
- W47137038 hasRelatedWork W1513133520 @default.
- W47137038 hasRelatedWork W1806900675 @default.
- W47137038 hasRelatedWork W190762192 @default.
- W47137038 hasRelatedWork W1999325019 @default.
- W47137038 hasRelatedWork W2012644626 @default.
- W47137038 hasRelatedWork W2049418957 @default.
- W47137038 hasRelatedWork W2109024167 @default.
- W47137038 hasRelatedWork W2117683788 @default.
- W47137038 hasRelatedWork W2127538960 @default.
- W47137038 hasRelatedWork W2155079033 @default.
- W47137038 hasRelatedWork W2161919332 @default.
- W47137038 hasRelatedWork W2407735730 @default.
- W47137038 hasRelatedWork W2774914265 @default.
- W47137038 hasRelatedWork W2908620745 @default.
- W47137038 hasRelatedWork W2941256613 @default.
- W47137038 hasRelatedWork W2964933009 @default.
- W47137038 hasRelatedWork W3160203949 @default.
- W47137038 hasRelatedWork W3199348969 @default.
- W47137038 hasRelatedWork W568924265 @default.
- W47137038 hasRelatedWork W1499413214 @default.
- W47137038 isParatext "false" @default.
- W47137038 isRetracted "false" @default.
- W47137038 magId "47137038" @default.
- W47137038 workType "article" @default.