Matches in SemOpenAlex for { <https://semopenalex.org/work/W47267595> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W47267595 endingPage "53" @default.
- W47267595 startingPage "343" @default.
- W47267595 abstract "For the purpose of forecasting the prevalence ofJapanese encephalitis in Japan, we tried to find out the correlation of factors between median and mode dates of epidemic time curve of prevalence on one hand, andaverage atmospheric temperatures of prefectures in June and July (T6,7 in short) (X¹), the time when HI reaction of swine became positive to the degree of 50 per cent (D. pos. swine in short) (X²), the latitude (x³) and longitude (x4) in respective prefectures (in 1965 and 1967). On the other we also estimated the median and mode dates of this epidemic curve of the prevalence in 1968 and 1969, from the regression equation of one variable and multiple regression equation from the above factors using an electronic computer. The usefulness of adding factors concerned with mosquitoes to the above four factors is proven by the accuracy of estimation. And the following results were obtained. 1) Phenomenally speaking, the prevalence of Japanese encephalitis follows the principle of advancing of prevalence towards the north andeast and essentially speaking, it depends upon high atmospheric temperature and the outbreak of many hazardous mosquitoes by the high atmospheric temperature. 2) To estimate median date (y) and mode rate (z) of the epidemictime curve of the prevalence, we can use the next equations; The regression equations to estimate y and z from T 6,7(X) are as follows. y = - 3. 75X¹ + 144.47 σ = 12.4.·. [1] z = - 3. 80X¹ + 157 .26 σ = 14.9.. · [1]' The regression equation from D. pos. swine (X²) are as follows. y = 0. 68X² + 31. 82 σ = 9.2· .. [2] z=0. 76X² +40. 71 σ= 12.0 .. · [2]'The multiple regression equation from T6 ,7 and D. pos. swme are as follows. y = -1. 07X¹ +0 .62x² +59. 37 σ= 9.7 ... [3] z= -0. 79x¹ +0. 71x² +61.02 σ= 12.0· .. [3]' The multiple regression equations from T 6•7, D. pos. swine, latitude and longitude are as follows Y= -1.01x¹ +0.58x² -0.26x³+0 .37x4 + 18.50 σ= 9.8・・・ [4] z = -0. 32x¹ +0. 52x² +2 .05x³ +0 .54x4 -87. 81 σ= 11.8 [4]' 3) We Obtained the estimated value of median date in 17 prefectures in Kyushu, Chugoku, Shikoku, Kinki and Kanto provinces in 1968 and in 13 prefectures in 1969 from [l] or [2] or [3] or [4] equation. Nine prefectures out of 17 by [l], 12 prefectures by [2], 13 by [3J and [4] in 1968. [4] could be estimated with about 10 days error or less. And in 1969, 9 out of 13 by [3] and 7 out of 13 by [4] could be accurately esti· mated. The estimation by the multiple regression equation using manyfactors is most useful for the calculation. 4) The time when the number of patients increases at maximum can be pointed out by the lower limit of prediction region obtained from data in each prefecture. And the lower limit was the estimated median value minus about 20 days by [1] and about 16 days by [2] or [3] or [4] under the next condition; α = 0. 1, N= 75. 5) The mode dates in 17 prefectures out of 19 were estimated by [1]', [2]', [3]' and [4]'. 12 prefectures out of 17 by [1]', 7 by [2]', 10by [3]' and 13 by [4]' could be estimated with about 12 days error or less in 1968 and 9 out of 13 was correctly estimated by [3]' and [4]' in 1969. The estimation by the regression line of one factor was s~mewhat differentfrom each other, but when multiple regression line of four factors was used the estimation became more correct.Judging from these results, it is adequate to use the multiple regression equation of [4] and [4]' when we want to forecast the median date or mode date ofJapanese encephalitis time cure. 6) In the case of adding two factors concerned with mosquitoes to T6,7 (X¹), D. pos. swine (x²), latitude (x³), longitude (x4), multiple regression equations become as follows. y= -1.46x¹+0.14X²+0.068x5+89.03 σ= 6.9.. ·[5]z= -3. 29x¹+0 .13x²-0. 010x5+ 143.63 σ= 18.6··· [5]' y=-4.20x¹+0.35x²+0.29x6 + 53.70 σ= 4.2 .. ·[6] z=-2.56x¹-0.0lx²-0.02x6 +128.96 σ=11.4 [6]' y= 4.76x¹+0.41x²+0.13x5+0.22x6-72.78 σ= 4.5 [7]z = - 2. l0x¹ + 0. 05x²+ 0. 11 x5 - 0. 08x6+ 113.4 σ= 10. 7.. · [7]' where x5 is the time when the number of mosquitoes (C. T. collected by light trap reached the maximum and X6 is the time when hazardous mosquitoes were dected. In the case of median date, 5 prefectures out of 6 prefectures by [5], 2 out of 6 by [6] and 2 out of 5 by [7], and in the case of mode date,5 out of 6 by [5]', 4 out of 5 by [6]' and 4 out of 5 by [7]' could be accurately estimated in 1969." @default.
- W47267595 created "2016-06-24" @default.
- W47267595 creator A5011463712 @default.
- W47267595 creator A5014344334 @default.
- W47267595 date "1970-06-01" @default.
- W47267595 modified "2023-09-23" @default.
- W47267595 title "Forecasting median and mode dates of prevalence of Japanese encephalitis patients by electronic computer (epidemiological studies on Japanese encephalitis, 31)." @default.
- W47267595 cites W1550873968 @default.
- W47267595 cites W2738011106 @default.
- W47267595 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/4395193" @default.
- W47267595 hasPublicationYear "1970" @default.
- W47267595 type Work @default.
- W47267595 sameAs 47267595 @default.
- W47267595 citedByCount "0" @default.
- W47267595 crossrefType "journal-article" @default.
- W47267595 hasAuthorship W47267595A5011463712 @default.
- W47267595 hasAuthorship W47267595A5014344334 @default.
- W47267595 hasConcept C105795698 @default.
- W47267595 hasConcept C107130276 @default.
- W47267595 hasConcept C111919701 @default.
- W47267595 hasConcept C116675565 @default.
- W47267595 hasConcept C121332964 @default.
- W47267595 hasConcept C122523270 @default.
- W47267595 hasConcept C126322002 @default.
- W47267595 hasConcept C13280743 @default.
- W47267595 hasConcept C144024400 @default.
- W47267595 hasConcept C149923435 @default.
- W47267595 hasConcept C152877465 @default.
- W47267595 hasConcept C159047783 @default.
- W47267595 hasConcept C205649164 @default.
- W47267595 hasConcept C24890656 @default.
- W47267595 hasConcept C2522874641 @default.
- W47267595 hasConcept C2775997480 @default.
- W47267595 hasConcept C2779141303 @default.
- W47267595 hasConcept C2780554747 @default.
- W47267595 hasConcept C33923547 @default.
- W47267595 hasConcept C41008148 @default.
- W47267595 hasConcept C48677424 @default.
- W47267595 hasConcept C71924100 @default.
- W47267595 hasConcept C83455156 @default.
- W47267595 hasConcept C83546350 @default.
- W47267595 hasConceptScore W47267595C105795698 @default.
- W47267595 hasConceptScore W47267595C107130276 @default.
- W47267595 hasConceptScore W47267595C111919701 @default.
- W47267595 hasConceptScore W47267595C116675565 @default.
- W47267595 hasConceptScore W47267595C121332964 @default.
- W47267595 hasConceptScore W47267595C122523270 @default.
- W47267595 hasConceptScore W47267595C126322002 @default.
- W47267595 hasConceptScore W47267595C13280743 @default.
- W47267595 hasConceptScore W47267595C144024400 @default.
- W47267595 hasConceptScore W47267595C149923435 @default.
- W47267595 hasConceptScore W47267595C152877465 @default.
- W47267595 hasConceptScore W47267595C159047783 @default.
- W47267595 hasConceptScore W47267595C205649164 @default.
- W47267595 hasConceptScore W47267595C24890656 @default.
- W47267595 hasConceptScore W47267595C2522874641 @default.
- W47267595 hasConceptScore W47267595C2775997480 @default.
- W47267595 hasConceptScore W47267595C2779141303 @default.
- W47267595 hasConceptScore W47267595C2780554747 @default.
- W47267595 hasConceptScore W47267595C33923547 @default.
- W47267595 hasConceptScore W47267595C41008148 @default.
- W47267595 hasConceptScore W47267595C48677424 @default.
- W47267595 hasConceptScore W47267595C71924100 @default.
- W47267595 hasConceptScore W47267595C83455156 @default.
- W47267595 hasConceptScore W47267595C83546350 @default.
- W47267595 hasIssue "3" @default.
- W47267595 hasLocation W472675951 @default.
- W47267595 hasOpenAccess W47267595 @default.
- W47267595 hasPrimaryLocation W472675951 @default.
- W47267595 hasRelatedWork W1594276096 @default.
- W47267595 hasRelatedWork W1971986234 @default.
- W47267595 hasRelatedWork W1985047681 @default.
- W47267595 hasRelatedWork W2057550814 @default.
- W47267595 hasRelatedWork W2081272835 @default.
- W47267595 hasRelatedWork W2123138046 @default.
- W47267595 hasRelatedWork W2144567501 @default.
- W47267595 hasRelatedWork W2415904404 @default.
- W47267595 hasRelatedWork W2419859719 @default.
- W47267595 hasRelatedWork W325939300 @default.
- W47267595 hasVolume "24" @default.
- W47267595 isParatext "false" @default.
- W47267595 isRetracted "false" @default.
- W47267595 magId "47267595" @default.
- W47267595 workType "article" @default.