Matches in SemOpenAlex for { <https://semopenalex.org/work/W47466951> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W47466951 endingPage "422" @default.
- W47466951 startingPage "416" @default.
- W47466951 abstract "For conventional casting processes low copper and tin contents have to be ensured in LC‐steel to avoid hot shortness. It is expected that higher cooling rates, e.g. in thin strip casting, permit higher copper and tin limits. Hot shortness occurs because of selective oxidation of the iron whereby the more noble copper is enriched at the steel‐oxide interface. A liquid metallic copper phase which wets the grain boundaries supports cracking during hot deformation. The enrichment of the liquid copper phase depends on the oxidation temperature: At low temperatures copper is solid, cannot wet the steel surface and is incorporated into the growing oxide layer. At mid temperatures (1083‐1177 °C) the copper phase is liquid, wets the grain boundaries of the steel surface and causes hot shortness. At high temperatures a liquid fayalitic slag is formed in the oxide layer if the steel contains silicon. The fayalitic phase occludes parts of the steel surface and removes copper from the steel surface; then hot shortness is reduced or even avoided. Other mechanisms to remove copper from the steel surface need the presence of Fe 3 O 4 and Fe 2 O 3 in the oxide layer. These iron oxides are not formed for short oxidation times where linear oxidation takes place. Diffusion of copper into the steel is too slow to reduce hot shortness if copper has an elevated concentration in the steel, e.g. 0.5 wt.‐%. Therefore, only the occlusion mechanism is of importance during linear oxidation. A model is established on the basis of these observations in order to predict an upper copper limit in dependence of the steel strip thickness (cooling behaviour) and the oxygen content in the cooling atmosphere (nitrogen‐oxygen mixture). The model is compared to experimental results from KIMAB which are presented in this issue. It is demonstrated that a copper layer thickness of 0.098 μ m at the steel‐oxide interface is sufficient to cause cracks of a depth of more than 0.2 mm. For strip thicknesses below 5 mm a simple approximation can be used to predict the maximum copper content in LC‐steel to avoid hot shortness. For example, thin strip of a thickness of 2 mm will have no cracks (above 0.2 mm) even if 0.7 wt.‐% of copper is contained in the LC‐steel. For atmospheres with a reduced oxygen partial pressure even higher copper contents are possible. Tin is with short oxidation times not a problem concerning hot shortness, as shown by the KIMAB results. This may be explained by the much higher diffusivity of tin in iron compared to copper." @default.
- W47466951 created "2016-06-24" @default.
- W47466951 creator A5002728813 @default.
- W47466951 creator A5036524094 @default.
- W47466951 date "2006-06-01" @default.
- W47466951 modified "2023-10-05" @default.
- W47466951 title "Maximum Copper and Tin Contents in LC-steel Thin Strip - Hot Shortness Model Calculations" @default.
- W47466951 cites W1586168727 @default.
- W47466951 cites W2474304879 @default.
- W47466951 cites W2525475547 @default.
- W47466951 cites W2528192303 @default.
- W47466951 cites W2936656265 @default.
- W47466951 doi "https://doi.org/10.1002/srin.200606408" @default.
- W47466951 hasPublicationYear "2006" @default.
- W47466951 type Work @default.
- W47466951 sameAs 47466951 @default.
- W47466951 citedByCount "9" @default.
- W47466951 countsByYear W474669512016 @default.
- W47466951 countsByYear W474669512023 @default.
- W47466951 crossrefType "journal-article" @default.
- W47466951 hasAuthorship W47466951A5002728813 @default.
- W47466951 hasAuthorship W47466951A5036524094 @default.
- W47466951 hasConcept C178790620 @default.
- W47466951 hasConcept C185592680 @default.
- W47466951 hasConcept C191897082 @default.
- W47466951 hasConcept C192562407 @default.
- W47466951 hasConcept C2779851234 @default.
- W47466951 hasConcept C2781183027 @default.
- W47466951 hasConcept C44280652 @default.
- W47466951 hasConcept C47908070 @default.
- W47466951 hasConcept C525849907 @default.
- W47466951 hasConcept C544153396 @default.
- W47466951 hasConcept C544778455 @default.
- W47466951 hasConcept C87976508 @default.
- W47466951 hasConceptScore W47466951C178790620 @default.
- W47466951 hasConceptScore W47466951C185592680 @default.
- W47466951 hasConceptScore W47466951C191897082 @default.
- W47466951 hasConceptScore W47466951C192562407 @default.
- W47466951 hasConceptScore W47466951C2779851234 @default.
- W47466951 hasConceptScore W47466951C2781183027 @default.
- W47466951 hasConceptScore W47466951C44280652 @default.
- W47466951 hasConceptScore W47466951C47908070 @default.
- W47466951 hasConceptScore W47466951C525849907 @default.
- W47466951 hasConceptScore W47466951C544153396 @default.
- W47466951 hasConceptScore W47466951C544778455 @default.
- W47466951 hasConceptScore W47466951C87976508 @default.
- W47466951 hasIssue "6" @default.
- W47466951 hasLocation W474669511 @default.
- W47466951 hasOpenAccess W47466951 @default.
- W47466951 hasPrimaryLocation W474669511 @default.
- W47466951 hasRelatedWork W157671884 @default.
- W47466951 hasRelatedWork W1982670103 @default.
- W47466951 hasRelatedWork W1991668545 @default.
- W47466951 hasRelatedWork W2050482233 @default.
- W47466951 hasRelatedWork W2067829205 @default.
- W47466951 hasRelatedWork W2073677325 @default.
- W47466951 hasRelatedWork W2128501773 @default.
- W47466951 hasRelatedWork W2381843244 @default.
- W47466951 hasRelatedWork W2906627121 @default.
- W47466951 hasRelatedWork W4235986610 @default.
- W47466951 hasVolume "77" @default.
- W47466951 isParatext "false" @default.
- W47466951 isRetracted "false" @default.
- W47466951 magId "47466951" @default.
- W47466951 workType "article" @default.