Matches in SemOpenAlex for { <https://semopenalex.org/work/W47696997> ?p ?o ?g. }
- W47696997 abstract "Many economic models have a structure that depends on majorization phenomena for convolutions of distributions. The present paper develops a unified approach to the analysis of majorization properties of linear combinations of random variables. It further studies the robustness of these properties and the implications of a number of important economic models to heavy-tailedness assumptions. The paper shows that majorizations for log-concave distributed random variables established in the seminal work by Proschan (1965) continue to hold for not extremely thick-tailed distributions. However, the majorization properties are reversed in the case of distributions with extremely heavy-tailed densities. This is the first probabilistic result that shows that majorization properties of log-concave densities are reversed for a wide class of distributions and is the key to reversals of properties of many economic models built upon the popular log-concavity assumption. In a series of applications of the main probabilistic results, we study robustness of monotone consistency of the sample mean, value at risk (VaR) analysis for financial portfolios, growth theory for firms that can invest in information about their market, as well as that of bundling theory for sellers of baskets of goods with an arbitrary degree of complementarity or substitutability. The main results show that many economic models are robust to heavy-tailedness assumptions as long as the distributions entering these assumptions are not extremely thick-tailed. But the implications of these models are reversed for distributions with sufficiently long-tailed densities. The following list summarizes some of the main results. i) Using the general majorization results obtained, the paper shows, for the first time in the literature, that the stylized fact that portfolio diversification is always preferable is reversed for a wide class of distributions of risks. Namely, in the case of risks with extremely thick-tailed distributions, diversification of a portfolio always leads to an increase in riskiness of the portfolio’s return. The paper further demonstrates that the stylized facts on diversification are robust to thick-tailedness of risks or returns as long as their distributions are not extremely long-tailed. Moreover, we show that, in the world of not extremely heavy-tailed risks, the value at risk satisfies the important condition of coherency. However, coherency of the value at risk is always violated if distributions of risks are extremely thick-tailed. In addition, the paper shows that the sample mean exhibits monotone consistency in the case of data from not extremely thick-tailed populations. Thus, an increase in the sample size always improves performance of the sample mean. 1Job market paper. I am indebted to Donald Andrews, Peter Phillips and Herbert Scarf for all their support and guidance in all stages of the current project. I also thank Aydin Cecen, Brian Dineen, Darrell Duffie, Xavier Gabaix, Philip Haile, Samuel Karlin, Alex Maynard, Ingram Olkin, Ben Polak, Gustavo Soares, Kevin Song and the participants at the International Conference on Stochastic Finance, 2004 and the 18th New England Statistics Symposium at Harvard University for helpful comments and discussions. The financial support from the Yale University Graduate Fellowship and the Cowles Foundation Prize is gratefully acknowledged." @default.
- W47696997 created "2016-06-24" @default.
- W47696997 creator A5018240070 @default.
- W47696997 date "2004-01-01" @default.
- W47696997 modified "2023-09-27" @default.
- W47696997 title "ON THE ROBUSTNESS OF ECONOMIC MODELS TO HEAVY-TAILEDNESS ASSUMPTIONS" @default.
- W47696997 cites W1214703565 @default.
- W47696997 cites W1482896950 @default.
- W47696997 cites W1491718027 @default.
- W47696997 cites W1494498837 @default.
- W47696997 cites W1495808163 @default.
- W47696997 cites W1526512085 @default.
- W47696997 cites W1541459046 @default.
- W47696997 cites W1564609383 @default.
- W47696997 cites W1605494388 @default.
- W47696997 cites W1864010192 @default.
- W47696997 cites W1969897341 @default.
- W47696997 cites W1985731065 @default.
- W47696997 cites W1987979830 @default.
- W47696997 cites W1988837127 @default.
- W47696997 cites W1990117446 @default.
- W47696997 cites W2004092239 @default.
- W47696997 cites W2006309149 @default.
- W47696997 cites W2008886947 @default.
- W47696997 cites W2009463071 @default.
- W47696997 cites W2009623947 @default.
- W47696997 cites W2012100722 @default.
- W47696997 cites W2012562345 @default.
- W47696997 cites W2013915050 @default.
- W47696997 cites W2017836573 @default.
- W47696997 cites W2019291268 @default.
- W47696997 cites W2021939887 @default.
- W47696997 cites W2022839848 @default.
- W47696997 cites W2035638978 @default.
- W47696997 cites W2045115330 @default.
- W47696997 cites W2045256342 @default.
- W47696997 cites W2046396733 @default.
- W47696997 cites W2046415502 @default.
- W47696997 cites W2048861917 @default.
- W47696997 cites W2049744504 @default.
- W47696997 cites W2050541872 @default.
- W47696997 cites W2050659050 @default.
- W47696997 cites W2052144575 @default.
- W47696997 cites W2056218466 @default.
- W47696997 cites W2061575983 @default.
- W47696997 cites W2066622234 @default.
- W47696997 cites W2072888225 @default.
- W47696997 cites W2076209196 @default.
- W47696997 cites W2077867009 @default.
- W47696997 cites W2081466901 @default.
- W47696997 cites W2086071535 @default.
- W47696997 cites W2088963552 @default.
- W47696997 cites W2090637028 @default.
- W47696997 cites W2092265100 @default.
- W47696997 cites W2107274838 @default.
- W47696997 cites W2109542379 @default.
- W47696997 cites W2122528211 @default.
- W47696997 cites W2122861691 @default.
- W47696997 cites W2133037631 @default.
- W47696997 cites W2133469585 @default.
- W47696997 cites W2136005082 @default.
- W47696997 cites W2339066193 @default.
- W47696997 cites W23477687 @default.
- W47696997 cites W3021924892 @default.
- W47696997 cites W3022050436 @default.
- W47696997 cites W3122946301 @default.
- W47696997 cites W3123294608 @default.
- W47696997 cites W3124251551 @default.
- W47696997 cites W3124704584 @default.
- W47696997 cites W3125010838 @default.
- W47696997 cites W3125310193 @default.
- W47696997 cites W45326702 @default.
- W47696997 cites W83900301 @default.
- W47696997 cites W2013479806 @default.
- W47696997 hasPublicationYear "2004" @default.
- W47696997 type Work @default.
- W47696997 sameAs 47696997 @default.
- W47696997 citedByCount "16" @default.
- W47696997 countsByYear W476969972012 @default.
- W47696997 countsByYear W476969972013 @default.
- W47696997 countsByYear W476969972014 @default.
- W47696997 crossrefType "journal-article" @default.
- W47696997 hasAuthorship W47696997A5018240070 @default.
- W47696997 hasConcept C104317684 @default.
- W47696997 hasConcept C105795698 @default.
- W47696997 hasConcept C114614502 @default.
- W47696997 hasConcept C122123141 @default.
- W47696997 hasConcept C149782125 @default.
- W47696997 hasConcept C185592680 @default.
- W47696997 hasConcept C2777818330 @default.
- W47696997 hasConcept C33923547 @default.
- W47696997 hasConcept C49937458 @default.
- W47696997 hasConcept C55493867 @default.
- W47696997 hasConcept C63479239 @default.
- W47696997 hasConceptScore W47696997C104317684 @default.
- W47696997 hasConceptScore W47696997C105795698 @default.
- W47696997 hasConceptScore W47696997C114614502 @default.
- W47696997 hasConceptScore W47696997C122123141 @default.
- W47696997 hasConceptScore W47696997C149782125 @default.
- W47696997 hasConceptScore W47696997C185592680 @default.