Matches in SemOpenAlex for { <https://semopenalex.org/work/W48041717> ?p ?o ?g. }
- W48041717 abstract "1.1. Motivation. Let E be an elliptic curve over a p-adic integer ring R, and assume that E has supersingular reduction. Consider the 2-dimensional Fp-vector space of characteristic-0 geometric p-torsion points in the associated 1-parameter formal group E over R. It makes sense to ask if, in this vector space, there is a line whose points x are nearer to the origin than are all other points (with nearness measured by |X(x)| for a formal coordinate X of E over R; the choice of X does not affect |X(x)|). Such a subgroup may or may not exist, and when it does exist it is unique and is called the canonical subgroup. This notion was studied by Lubin [Lu] in the more general context of 1-parameter commutative formal groups, and its scope was vastly extended by Katz [K] in the relative setting for elliptic curves over p-adic formal schemes and for analytified universal elliptic curves over certain modular curves. Katz’ ideas grew into a powerful tool in the study of p-adic modular forms for GL2/Q. The study of p-adic modular forms for more general algebraic groups and number fields, going beyond the classical case of GL2/Q, leads to the desire to have a theory of canonical subgroups for families of abelian varieties. (See [KL] for an application to Hilbert modular forms.) Ideally, one wants such a theory that avoids restrictions on the nature of formal (or algebraic) integral models for the family of abelian varieties, but it should also be amenable to study via suitable formal models (when available). In this paper we develop such a theory, and our viewpoint and methods are different from those of other authors who have recently worked on the problem (such as [AM], [AG], [GK], and [KL]). The theory in this paper (in conjunction with methods in [KL]) has been recently used by K. Tignor to construct 1-parameter p-adic families of non-ordinary automorphic forms on some 3-variable general unitary groups associated to CM fields. Roughly speaking, if A is an abelian variety of dimension g over an analytic extension field k/Qp (with the normalization |p| = 1/p) then a level-n canonical subgroup Gn ⊆ A[p] is a k-subgroup with geometric fiber (Z/pZ) such that (for k ∧ /k a completed algebraic closure) the points in Gn(k ∧ ) ⊆ A[pn](k) are nearer to the identity than are all other points in A[p](k ∧ ). Here, nearness is defined in terms of absolute values of coordinates in the formal group of the unique formal semi-abelian “model” AR′ for A over the valuation ring R′ of a sufficiently large finite extension k′/k. (See Theorem 2.1.9 for the characterization of AR′ in terms of the analytification A, and see Definitions 2.2.5 and 2.2.7 for the precise meaning of “nearness”.) In particular, Gn[p] is a level-m canonical subgroup for all 1 ≤ m ≤ n. By [C4, Thm. 4.2.5], for g = 1 this notion of higher-level canonical subgroup is (non-tautologically) equivalent to the one defined in [Bu] and [G]. (Although the theory for n > 1 can be recursively built from the case n = 1 when g = 1, which is the viewpoint used in [Bu] and [G], it does not seem that this is possible when g > 1 because it is much harder to work with multi-parameter formal groups than with one-parameter formal groups.) In contrast with the Galois-theoretic approach in [AM], our definition of canonical subgroups is not intrinsic to the torsion subgroups of A but rather uses the full structure of the formal group of a formal semi-abelian model AR′ . Moreover, since our method is geometric rather than Galois-theoretic it can be applied at the level of geometric points (where Galois-theoretic methods are not applicable). If a level-n" @default.
- W48041717 created "2016-06-24" @default.
- W48041717 creator A5041414176 @default.
- W48041717 date "2006-01-01" @default.
- W48041717 modified "2023-09-26" @default.
- W48041717 title "HIGHER-LEVEL CANONICAL SUBGROUPS IN ABELIAN VARIETIES" @default.
- W48041717 cites W129681401 @default.
- W48041717 cites W1482156586 @default.
- W48041717 cites W1487841144 @default.
- W48041717 cites W1503228864 @default.
- W48041717 cites W1522546683 @default.
- W48041717 cites W1548944036 @default.
- W48041717 cites W1549562143 @default.
- W48041717 cites W1557951805 @default.
- W48041717 cites W1559532354 @default.
- W48041717 cites W1570977320 @default.
- W48041717 cites W1971173584 @default.
- W48041717 cites W1972424678 @default.
- W48041717 cites W1982195808 @default.
- W48041717 cites W1993756907 @default.
- W48041717 cites W1996417646 @default.
- W48041717 cites W1998913330 @default.
- W48041717 cites W2013902307 @default.
- W48041717 cites W2035591380 @default.
- W48041717 cites W2048916732 @default.
- W48041717 cites W2054158019 @default.
- W48041717 cites W2054467143 @default.
- W48041717 cites W2069246401 @default.
- W48041717 cites W2072434200 @default.
- W48041717 cites W2082077150 @default.
- W48041717 cites W2083815362 @default.
- W48041717 cites W2084740341 @default.
- W48041717 cites W2095877551 @default.
- W48041717 cites W2133141125 @default.
- W48041717 cites W2134236241 @default.
- W48041717 cites W2151463592 @default.
- W48041717 cites W2247720757 @default.
- W48041717 cites W2318867719 @default.
- W48041717 cites W2504050845 @default.
- W48041717 cites W2606688886 @default.
- W48041717 cites W2994972836 @default.
- W48041717 cites W3135300355 @default.
- W48041717 cites W63829294 @default.
- W48041717 hasPublicationYear "2006" @default.
- W48041717 type Work @default.
- W48041717 sameAs 48041717 @default.
- W48041717 citedByCount "17" @default.
- W48041717 countsByYear W480417172012 @default.
- W48041717 countsByYear W480417172013 @default.
- W48041717 countsByYear W480417172015 @default.
- W48041717 countsByYear W480417172016 @default.
- W48041717 countsByYear W480417172017 @default.
- W48041717 countsByYear W480417172018 @default.
- W48041717 crossrefType "journal-article" @default.
- W48041717 hasAuthorship W48041717A5041414176 @default.
- W48041717 hasConcept C12657307 @default.
- W48041717 hasConcept C134306372 @default.
- W48041717 hasConcept C136170076 @default.
- W48041717 hasConcept C171075222 @default.
- W48041717 hasConcept C179603306 @default.
- W48041717 hasConcept C182327082 @default.
- W48041717 hasConcept C186219872 @default.
- W48041717 hasConcept C202444582 @default.
- W48041717 hasConcept C33923547 @default.
- W48041717 hasConcept C51544822 @default.
- W48041717 hasConcept C59766168 @default.
- W48041717 hasConcept C75764964 @default.
- W48041717 hasConcept C78045399 @default.
- W48041717 hasConceptScore W48041717C12657307 @default.
- W48041717 hasConceptScore W48041717C134306372 @default.
- W48041717 hasConceptScore W48041717C136170076 @default.
- W48041717 hasConceptScore W48041717C171075222 @default.
- W48041717 hasConceptScore W48041717C179603306 @default.
- W48041717 hasConceptScore W48041717C182327082 @default.
- W48041717 hasConceptScore W48041717C186219872 @default.
- W48041717 hasConceptScore W48041717C202444582 @default.
- W48041717 hasConceptScore W48041717C33923547 @default.
- W48041717 hasConceptScore W48041717C51544822 @default.
- W48041717 hasConceptScore W48041717C59766168 @default.
- W48041717 hasConceptScore W48041717C75764964 @default.
- W48041717 hasConceptScore W48041717C78045399 @default.
- W48041717 hasLocation W480417171 @default.
- W48041717 hasOpenAccess W48041717 @default.
- W48041717 hasPrimaryLocation W480417171 @default.
- W48041717 hasRelatedWork W1539158086 @default.
- W48041717 hasRelatedWork W1775230903 @default.
- W48041717 hasRelatedWork W1972717860 @default.
- W48041717 hasRelatedWork W1996417646 @default.
- W48041717 hasRelatedWork W2013902307 @default.
- W48041717 hasRelatedWork W2054158019 @default.
- W48041717 hasRelatedWork W2083815362 @default.
- W48041717 hasRelatedWork W2103699791 @default.
- W48041717 hasRelatedWork W2133141125 @default.
- W48041717 hasRelatedWork W2134236241 @default.
- W48041717 hasRelatedWork W2189358516 @default.
- W48041717 hasRelatedWork W2504050845 @default.
- W48041717 hasRelatedWork W2554204837 @default.
- W48041717 hasRelatedWork W2595076064 @default.
- W48041717 hasRelatedWork W2742681452 @default.
- W48041717 hasRelatedWork W2951636214 @default.