Matches in SemOpenAlex for { <https://semopenalex.org/work/W48075682> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W48075682 abstract "Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models, where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged." @default.
- W48075682 created "2016-06-24" @default.
- W48075682 creator A5056119574 @default.
- W48075682 date "2009-04-01" @default.
- W48075682 modified "2023-09-27" @default.
- W48075682 title "Contribution to the discussion of “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations” by H. Rue, S. Martino and N. Chopin" @default.
- W48075682 hasPublicationYear "2009" @default.
- W48075682 type Work @default.
- W48075682 sameAs 48075682 @default.
- W48075682 citedByCount "0" @default.
- W48075682 crossrefType "journal-article" @default.
- W48075682 hasAuthorship W48075682A5056119574 @default.
- W48075682 hasConcept C105795698 @default.
- W48075682 hasConcept C107673813 @default.
- W48075682 hasConcept C111350023 @default.
- W48075682 hasConcept C11413529 @default.
- W48075682 hasConcept C121332964 @default.
- W48075682 hasConcept C126255220 @default.
- W48075682 hasConcept C160234255 @default.
- W48075682 hasConcept C163716315 @default.
- W48075682 hasConcept C19499675 @default.
- W48075682 hasConcept C22243797 @default.
- W48075682 hasConcept C28826006 @default.
- W48075682 hasConcept C33923547 @default.
- W48075682 hasConcept C41008148 @default.
- W48075682 hasConcept C62520636 @default.
- W48075682 hasConcept C8642999 @default.
- W48075682 hasConcept C98763669 @default.
- W48075682 hasConceptScore W48075682C105795698 @default.
- W48075682 hasConceptScore W48075682C107673813 @default.
- W48075682 hasConceptScore W48075682C111350023 @default.
- W48075682 hasConceptScore W48075682C11413529 @default.
- W48075682 hasConceptScore W48075682C121332964 @default.
- W48075682 hasConceptScore W48075682C126255220 @default.
- W48075682 hasConceptScore W48075682C160234255 @default.
- W48075682 hasConceptScore W48075682C163716315 @default.
- W48075682 hasConceptScore W48075682C19499675 @default.
- W48075682 hasConceptScore W48075682C22243797 @default.
- W48075682 hasConceptScore W48075682C28826006 @default.
- W48075682 hasConceptScore W48075682C33923547 @default.
- W48075682 hasConceptScore W48075682C41008148 @default.
- W48075682 hasConceptScore W48075682C62520636 @default.
- W48075682 hasConceptScore W48075682C8642999 @default.
- W48075682 hasConceptScore W48075682C98763669 @default.
- W48075682 hasLocation W480756821 @default.
- W48075682 hasOpenAccess W48075682 @default.
- W48075682 hasPrimaryLocation W480756821 @default.
- W48075682 hasRelatedWork W1510426546 @default.
- W48075682 hasRelatedWork W1857729084 @default.
- W48075682 hasRelatedWork W2136097307 @default.
- W48075682 hasRelatedWork W2157404564 @default.
- W48075682 hasRelatedWork W2553315083 @default.
- W48075682 hasRelatedWork W2757830207 @default.
- W48075682 hasRelatedWork W2789818596 @default.
- W48075682 hasRelatedWork W2910559903 @default.
- W48075682 hasRelatedWork W2949231827 @default.
- W48075682 hasRelatedWork W2952813155 @default.
- W48075682 hasRelatedWork W2963983664 @default.
- W48075682 hasRelatedWork W2972178929 @default.
- W48075682 hasRelatedWork W3007104630 @default.
- W48075682 hasRelatedWork W3081737559 @default.
- W48075682 hasRelatedWork W3084427384 @default.
- W48075682 hasRelatedWork W3103714082 @default.
- W48075682 hasRelatedWork W3123510000 @default.
- W48075682 hasRelatedWork W3127182897 @default.
- W48075682 hasRelatedWork W3168194744 @default.
- W48075682 hasRelatedWork W3170242741 @default.
- W48075682 isParatext "false" @default.
- W48075682 isRetracted "false" @default.
- W48075682 magId "48075682" @default.
- W48075682 workType "article" @default.