Matches in SemOpenAlex for { <https://semopenalex.org/work/W4817423> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4817423 endingPage "185" @default.
- W4817423 startingPage "143" @default.
- W4817423 abstract "It is one of fundamental problems in differential geometry to find a distinguished metric on a smooth manifold. H. Poincare's Uniformization theorem settles this problem for Riemann surfaces. That is, there is a unique metric with constant curvature in each Kahler class on a Riemann surface. Trying to generalize it to higher dimensions, E. Calabi conjectured in the 50s the existence of KahlerEinstein metrics on a compact Kahler manifold with its first Chern class definite. A Kahler-Einstein metric is a Kahler metric with constant Ricci curvature. In the middle of the 70s, this conjecture was solved by S. T. Yau in case the first Chern class is vanishing and Aubin and Yau, independently, in case the Chern class is negative (cf. [Yl]). The uniqueness in these two cases was done by E. Calabi himself in the 50s. Such Kahler-Einstein metrics were then applied to studying projective manifolds. For instance, Yau used these metrics to show the Miyaoka-Yau inequality on surface of general type, its generalized version in higher dimensions and the characterization of the quotients of the complex hyperbolic spaces (cf. [Y2]). We also refer readers to [CY, Ko, Ts, TY1] for the generalizations of these to quasi-projective manifolds. However, this conjecture of Calabi still remains open in general in case the first Chern class is positive. In this paper, we will survey the recent progress on this part of Calabi's conjecture, including the uniqueness and the existence of Kahler-Einstein metrics with positive scalar curvature, the outline of the complete solution for Calabi's conjecture in case of complex dimension two, etc. Some related problems will also be discussed. From now on, we always denote by M a compact Kahler manifold with positive first Chern class C(M), that is, M is a smooth Fano variety. Then we can choose a Kahler metric g with its Kahler class cog representing C(M). In local coordinates (z,'--,zn) of M with dime M = n, if g is represented by positive hermitian metrices {g (z)}i /,y5<H," @default.
- W4817423 created "2016-06-24" @default.
- W4817423 creator A5018414096 @default.
- W4817423 date "1996-01-01" @default.
- W4817423 modified "2023-10-13" @default.
- W4817423 title "Kähler-Einstein metrics on algebraic manifolds" @default.
- W4817423 cites W1577877361 @default.
- W4817423 cites W1605837385 @default.
- W4817423 cites W1942165802 @default.
- W4817423 cites W1958493481 @default.
- W4817423 cites W1994934481 @default.
- W4817423 cites W2000242689 @default.
- W4817423 cites W2009789482 @default.
- W4817423 cites W2021499246 @default.
- W4817423 cites W2027029357 @default.
- W4817423 cites W2035739348 @default.
- W4817423 cites W2041872613 @default.
- W4817423 cites W2056081046 @default.
- W4817423 cites W2056635698 @default.
- W4817423 cites W2057722206 @default.
- W4817423 cites W2074921918 @default.
- W4817423 cites W2074934256 @default.
- W4817423 cites W2078812735 @default.
- W4817423 cites W2088621660 @default.
- W4817423 cites W2091421430 @default.
- W4817423 cites W2102791955 @default.
- W4817423 cites W2103781270 @default.
- W4817423 cites W2144384497 @default.
- W4817423 cites W2625300135 @default.
- W4817423 cites W2673114512 @default.
- W4817423 cites W3015305294 @default.
- W4817423 cites W4242522601 @default.
- W4817423 cites W4246893600 @default.
- W4817423 doi "https://doi.org/10.1007/bfb0094304" @default.
- W4817423 hasPublicationYear "1996" @default.
- W4817423 type Work @default.
- W4817423 sameAs 4817423 @default.
- W4817423 citedByCount "88" @default.
- W4817423 countsByYear W48174232012 @default.
- W4817423 countsByYear W48174232013 @default.
- W4817423 countsByYear W48174232014 @default.
- W4817423 countsByYear W48174232015 @default.
- W4817423 countsByYear W48174232016 @default.
- W4817423 countsByYear W48174232017 @default.
- W4817423 countsByYear W48174232018 @default.
- W4817423 countsByYear W48174232019 @default.
- W4817423 countsByYear W48174232020 @default.
- W4817423 countsByYear W48174232021 @default.
- W4817423 countsByYear W48174232022 @default.
- W4817423 crossrefType "book-chapter" @default.
- W4817423 hasAuthorship W4817423A5018414096 @default.
- W4817423 hasConcept C134306372 @default.
- W4817423 hasConcept C136119220 @default.
- W4817423 hasConcept C146846114 @default.
- W4817423 hasConcept C202444582 @default.
- W4817423 hasConcept C33923547 @default.
- W4817423 hasConcept C37914503 @default.
- W4817423 hasConcept C9376300 @default.
- W4817423 hasConceptScore W4817423C134306372 @default.
- W4817423 hasConceptScore W4817423C136119220 @default.
- W4817423 hasConceptScore W4817423C146846114 @default.
- W4817423 hasConceptScore W4817423C202444582 @default.
- W4817423 hasConceptScore W4817423C33923547 @default.
- W4817423 hasConceptScore W4817423C37914503 @default.
- W4817423 hasConceptScore W4817423C9376300 @default.
- W4817423 hasLocation W48174231 @default.
- W4817423 hasOpenAccess W4817423 @default.
- W4817423 hasPrimaryLocation W48174231 @default.
- W4817423 hasRelatedWork W1587224694 @default.
- W4817423 hasRelatedWork W1979597421 @default.
- W4817423 hasRelatedWork W2007980826 @default.
- W4817423 hasRelatedWork W2061531152 @default.
- W4817423 hasRelatedWork W2077600819 @default.
- W4817423 hasRelatedWork W2142036596 @default.
- W4817423 hasRelatedWork W2911598644 @default.
- W4817423 hasRelatedWork W3002753104 @default.
- W4817423 hasRelatedWork W4225152035 @default.
- W4817423 hasRelatedWork W4245490552 @default.
- W4817423 isParatext "false" @default.
- W4817423 isRetracted "false" @default.
- W4817423 magId "4817423" @default.
- W4817423 workType "book-chapter" @default.