Matches in SemOpenAlex for { <https://semopenalex.org/work/W48645953> ?p ?o ?g. }
- W48645953 abstract "In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an n-vertex graph G = (V,E,w) with nonnegative edge weights w : E → R. Our goal is to maintain a tree T which is a good approximation of the minimum Steiner tree in G when the terminal set S ⊆ V changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). The Steiner tree problem is one of the core problems in combinatorial optimization. It has been studied in many different settings, starting from classical approximation algorithms, through online and stochastic models, ending with game theoretic approaches. However, almost nothing is known about the Steiner tree problem in a dynamic setting. The reason for this seems to be the lack of strong enough tools in both online approximation algorithms and dynamic algorithms. In this paper we develop appropriate methods that contribute to these both areas. The first ingredient is not restricted to planar graphs and contributes to the area of online algorithms. We prove that the maintained tree T after each update does not change too much and that it can be recomputed using a vertex-to-label distance oracle. A vertex-to-label oracle allows one to label the vertices and ask for the distance between a given vertex and the set of vertices marked with a particular label. A dynamic vertex-to-label oracle additionally supports merge and split operations on the label sets. We show that in incremental scenario O(log n) calls to the oracle per update operation suffice, in decremental O(1) calls are sufficient, whereas in fully dynamic scenario O(logD) calls are enough. Here, D denotes the stretch of the metric induced by G. The second ingredient, which contributes to the area of dynamic algorithms, is a construction of a fast (1+ )-approximate vertex-to-label distance oracles for planar graphs. In the case when labels’ sets can only grow (incremental scenario) we give an O( −1 log n logD) time data-structure. When the full set of operations is supported (i.e., merge and split on labels’ sets) we give O( −1 √ n log n logD) time data-structure. As an interesting side result, we present an exact incremental variant of the oracle working in O( √ n log n) amortized time and a fully-dynamic variant working in O(n log n) worst case time. The above oracles imply the first known sublinear time algorithm for dynamic Steiner tree problem in planar graphs. In particular we develop a polylogarithmic time incremental algorithm, an O( √ n log n logD) time decremental algorithm and an O( √ n log n logD) time fully-dynamic algorithm. ∗Institute of Informatics, University of Warsaw, Poland, j.lacki@mimuw.edu.pl. Jakub Łącki is a recipient of the Google Europe Fellowship in Graph Algorithms, and this research is supported in part by this Google Fellowship. †Institute of Informatics, University of Warsaw, Poland, netkuba@gmail.com. Partially supported by ERC grant PAAl no. 259515. ‡Institute of Informatics, University of Warsaw, Poland, malcin@mimuw.edu.pl. Partially supported by ERC grant PAAl no. 259515 and the Foundation for Polish Science. §Institute of Informatics, University of Warsaw, Poland, sank@mimuw.edu.pl. Partially supported by ERC grant PAAl no. 259515 and the Foundation for Polish Science. ¶Institute of Informatics, University of Warsaw, Poland, anka@mimuw.edu.pl. Partially supported by ERC grant PAAl no. 259515. ar X iv :1 30 8. 33 36 v2 [ cs .D S] 1 6 A ug 2 01 3" @default.
- W48645953 created "2016-06-24" @default.
- W48645953 creator A5006029407 @default.
- W48645953 creator A5025494465 @default.
- W48645953 creator A5044510135 @default.
- W48645953 creator A5053514718 @default.
- W48645953 creator A5059330513 @default.
- W48645953 date "2013-08-15" @default.
- W48645953 modified "2023-09-27" @default.
- W48645953 title "Dynamic Steiner Tree in Planar Graphs." @default.
- W48645953 cites W102445152 @default.
- W48645953 cites W1864228528 @default.
- W48645953 cites W1976584101 @default.
- W48645953 cites W1981673685 @default.
- W48645953 cites W1990317614 @default.
- W48645953 cites W1991055327 @default.
- W48645953 cites W1994248285 @default.
- W48645953 cites W2022163094 @default.
- W48645953 cites W2024234219 @default.
- W48645953 cites W2029437526 @default.
- W48645953 cites W2038643780 @default.
- W48645953 cites W2039298646 @default.
- W48645953 cites W2045430818 @default.
- W48645953 cites W2045749371 @default.
- W48645953 cites W2064147138 @default.
- W48645953 cites W2070664846 @default.
- W48645953 cites W2071608792 @default.
- W48645953 cites W2078443814 @default.
- W48645953 cites W2096304547 @default.
- W48645953 cites W2120424341 @default.
- W48645953 cites W2165142526 @default.
- W48645953 cites W2166242192 @default.
- W48645953 cites W2167101557 @default.
- W48645953 cites W2206166768 @default.
- W48645953 cites W2229164416 @default.
- W48645953 cites W2395489635 @default.
- W48645953 cites W2762935521 @default.
- W48645953 cites W2768149714 @default.
- W48645953 cites W2950666218 @default.
- W48645953 cites W63325702 @default.
- W48645953 hasPublicationYear "2013" @default.
- W48645953 type Work @default.
- W48645953 sameAs 48645953 @default.
- W48645953 citedByCount "2" @default.
- W48645953 countsByYear W486459532013 @default.
- W48645953 countsByYear W486459532014 @default.
- W48645953 crossrefType "posted-content" @default.
- W48645953 hasAuthorship W48645953A5006029407 @default.
- W48645953 hasAuthorship W48645953A5025494465 @default.
- W48645953 hasAuthorship W48645953A5044510135 @default.
- W48645953 hasAuthorship W48645953A5053514718 @default.
- W48645953 hasAuthorship W48645953A5059330513 @default.
- W48645953 hasConcept C100560664 @default.
- W48645953 hasConcept C113174947 @default.
- W48645953 hasConcept C114614502 @default.
- W48645953 hasConcept C115903868 @default.
- W48645953 hasConcept C118615104 @default.
- W48645953 hasConcept C132525143 @default.
- W48645953 hasConcept C147517495 @default.
- W48645953 hasConcept C148764684 @default.
- W48645953 hasConcept C163797641 @default.
- W48645953 hasConcept C197855036 @default.
- W48645953 hasConcept C202750272 @default.
- W48645953 hasConcept C33923547 @default.
- W48645953 hasConcept C41008148 @default.
- W48645953 hasConcept C55166926 @default.
- W48645953 hasConcept C64331007 @default.
- W48645953 hasConcept C76220878 @default.
- W48645953 hasConcept C80899671 @default.
- W48645953 hasConceptScore W48645953C100560664 @default.
- W48645953 hasConceptScore W48645953C113174947 @default.
- W48645953 hasConceptScore W48645953C114614502 @default.
- W48645953 hasConceptScore W48645953C115903868 @default.
- W48645953 hasConceptScore W48645953C118615104 @default.
- W48645953 hasConceptScore W48645953C132525143 @default.
- W48645953 hasConceptScore W48645953C147517495 @default.
- W48645953 hasConceptScore W48645953C148764684 @default.
- W48645953 hasConceptScore W48645953C163797641 @default.
- W48645953 hasConceptScore W48645953C197855036 @default.
- W48645953 hasConceptScore W48645953C202750272 @default.
- W48645953 hasConceptScore W48645953C33923547 @default.
- W48645953 hasConceptScore W48645953C41008148 @default.
- W48645953 hasConceptScore W48645953C55166926 @default.
- W48645953 hasConceptScore W48645953C64331007 @default.
- W48645953 hasConceptScore W48645953C76220878 @default.
- W48645953 hasConceptScore W48645953C80899671 @default.
- W48645953 hasLocation W486459531 @default.
- W48645953 hasOpenAccess W48645953 @default.
- W48645953 hasPrimaryLocation W486459531 @default.
- W48645953 hasRelatedWork W1161997546 @default.
- W48645953 hasRelatedWork W1600381863 @default.
- W48645953 hasRelatedWork W168739660 @default.
- W48645953 hasRelatedWork W1751634490 @default.
- W48645953 hasRelatedWork W2058521212 @default.
- W48645953 hasRelatedWork W2163768829 @default.
- W48645953 hasRelatedWork W2563363393 @default.
- W48645953 hasRelatedWork W2620939520 @default.
- W48645953 hasRelatedWork W2916553772 @default.
- W48645953 hasRelatedWork W2926426864 @default.
- W48645953 hasRelatedWork W2950313362 @default.