Matches in SemOpenAlex for { <https://semopenalex.org/work/W48932249> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W48932249 abstract "Sets on which a superharmonic function can have the value +∞ are called polar. Since superharmonic functions are locally integrable, such sets must be of Lebesgue measure zero. Indeed, polar sets are the negligible sets of potential theory and will be seen to play a role reminiscent of that played by sets of measure zero in integration. A useful result proved in Section 5.2 is that closed polar sets are removable singularities for lower-bounded superharmonic functions and for bounded harmonic functions. In Section 5.3 we will introduce the notion of reduced functions. Given a positive superharmonic function u on a Greenian open set Ω and E ⊆ Ω, we consider the collection of all non-negative superharmonic functions v on ∖ which satisfy v ≥ u on E. The infimum of this collection is called the reduced function of u relative to E in Ω. Some basic properties of reduced functions will be observed, including the fact that they are “almost” superharmonic. Later, in Section 5.7, deeper properties will be proved via an important result known as the fundamental convergence theorem of potential theory. Before that, however, we will develop the notion of the capacity of a set, beginning with compact sets. Taking u ≡ 1 and E to be compact, the above reduced function is almost everywhere equal to a potential on Ω, and the total mass of the associated Riesz measure is called the capacity of E. For arbitrary sets E, we will define inner and outer capacity and, if these are equal, will term E capacitable." @default.
- W48932249 created "2016-06-24" @default.
- W48932249 creator A5019685084 @default.
- W48932249 creator A5084220751 @default.
- W48932249 date "2001-01-01" @default.
- W48932249 modified "2023-09-23" @default.
- W48932249 title "Polar Sets and Capacity" @default.
- W48932249 doi "https://doi.org/10.1007/978-1-4471-0233-5_5" @default.
- W48932249 hasPublicationYear "2001" @default.
- W48932249 type Work @default.
- W48932249 sameAs 48932249 @default.
- W48932249 citedByCount "0" @default.
- W48932249 crossrefType "book-chapter" @default.
- W48932249 hasAuthorship W48932249A5019685084 @default.
- W48932249 hasAuthorship W48932249A5084220751 @default.
- W48932249 hasConcept C118615104 @default.
- W48932249 hasConcept C134306372 @default.
- W48932249 hasConcept C14036430 @default.
- W48932249 hasConcept C200741047 @default.
- W48932249 hasConcept C202444582 @default.
- W48932249 hasConcept C2780009758 @default.
- W48932249 hasConcept C29373527 @default.
- W48932249 hasConcept C33923547 @default.
- W48932249 hasConcept C34388435 @default.
- W48932249 hasConcept C41008148 @default.
- W48932249 hasConcept C42357961 @default.
- W48932249 hasConcept C43994743 @default.
- W48932249 hasConcept C77088390 @default.
- W48932249 hasConcept C78458016 @default.
- W48932249 hasConcept C83295520 @default.
- W48932249 hasConcept C86803240 @default.
- W48932249 hasConcept C95611797 @default.
- W48932249 hasConceptScore W48932249C118615104 @default.
- W48932249 hasConceptScore W48932249C134306372 @default.
- W48932249 hasConceptScore W48932249C14036430 @default.
- W48932249 hasConceptScore W48932249C200741047 @default.
- W48932249 hasConceptScore W48932249C202444582 @default.
- W48932249 hasConceptScore W48932249C2780009758 @default.
- W48932249 hasConceptScore W48932249C29373527 @default.
- W48932249 hasConceptScore W48932249C33923547 @default.
- W48932249 hasConceptScore W48932249C34388435 @default.
- W48932249 hasConceptScore W48932249C41008148 @default.
- W48932249 hasConceptScore W48932249C42357961 @default.
- W48932249 hasConceptScore W48932249C43994743 @default.
- W48932249 hasConceptScore W48932249C77088390 @default.
- W48932249 hasConceptScore W48932249C78458016 @default.
- W48932249 hasConceptScore W48932249C83295520 @default.
- W48932249 hasConceptScore W48932249C86803240 @default.
- W48932249 hasConceptScore W48932249C95611797 @default.
- W48932249 hasLocation W489322491 @default.
- W48932249 hasOpenAccess W48932249 @default.
- W48932249 hasPrimaryLocation W489322491 @default.
- W48932249 hasRelatedWork W106182531 @default.
- W48932249 hasRelatedWork W1927751343 @default.
- W48932249 hasRelatedWork W1986023896 @default.
- W48932249 hasRelatedWork W2008407124 @default.
- W48932249 hasRelatedWork W2012833062 @default.
- W48932249 hasRelatedWork W2042896295 @default.
- W48932249 hasRelatedWork W2087667837 @default.
- W48932249 hasRelatedWork W2092685560 @default.
- W48932249 hasRelatedWork W2167898469 @default.
- W48932249 hasRelatedWork W2217067279 @default.
- W48932249 hasRelatedWork W2319534107 @default.
- W48932249 hasRelatedWork W2410064890 @default.
- W48932249 hasRelatedWork W2526318877 @default.
- W48932249 hasRelatedWork W2537596701 @default.
- W48932249 hasRelatedWork W2607711778 @default.
- W48932249 hasRelatedWork W2783558516 @default.
- W48932249 hasRelatedWork W2951747201 @default.
- W48932249 hasRelatedWork W3033324390 @default.
- W48932249 hasRelatedWork W46705755 @default.
- W48932249 hasRelatedWork W935696667 @default.
- W48932249 isParatext "false" @default.
- W48932249 isRetracted "false" @default.
- W48932249 magId "48932249" @default.
- W48932249 workType "book-chapter" @default.