Matches in SemOpenAlex for { <https://semopenalex.org/work/W4926959> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4926959 startingPage "6106" @default.
- W4926959 abstract "In the last ten years neural networks have been extensively used for hydrological modelling. Numerous experiments have demonstrated that they are very powerful tools for modelling complex hydrological relations and that they are very good rivals to traditional hydrological models. However, in spite of good operational modelling outcomes, neural networks are still often demonised for being black-box models that are unable to provide transparent solutions or incorporate prior hydrological knowledge. This paper focuses on incorporating prior hydrological knowledge about catchment behaviour in a neural network rainfall-runoff model. The neural network used in this study is the multi-layer feed-forward network which is widely used in hydrological modelling. To illustrate how specific prior knowledge can be incorporated into a neural network rainfall-runoff model, daily records of two different catchments are used. The catchments are Sunkosi located in Nepal and Blue Nile located in East Africa. Prior hydrological studies have demonstrated that both catchments have a strong seasonal response. In this study, prior knowledge of catchment seasonality is incorporated into the model by providing the neural network with additional input information to reflect changing climatological conditions i.e. seasonal expectations of rainfall and evaporation. Thereafter a ’track and trace’ approach is adopted to examine how this additional seasonal information is utilized in the neural network. The response of the hidden neurons is analysed and interpreted in terms of the effect that the additional input information has on the modelling throughput and output processes." @default.
- W4926959 created "2016-06-24" @default.
- W4926959 creator A5049969849 @default.
- W4926959 creator A5072299993 @default.
- W4926959 date "2009-04-01" @default.
- W4926959 modified "2023-09-26" @default.
- W4926959 title "Incorporating prior knowledge in neural network rainfall-runoff models" @default.
- W4926959 hasPublicationYear "2009" @default.
- W4926959 type Work @default.
- W4926959 sameAs 4926959 @default.
- W4926959 citedByCount "0" @default.
- W4926959 crossrefType "journal-article" @default.
- W4926959 hasAuthorship W4926959A5049969849 @default.
- W4926959 hasAuthorship W4926959A5072299993 @default.
- W4926959 hasConcept C119857082 @default.
- W4926959 hasConcept C126197015 @default.
- W4926959 hasConcept C126645576 @default.
- W4926959 hasConcept C127313418 @default.
- W4926959 hasConcept C146834321 @default.
- W4926959 hasConcept C154945302 @default.
- W4926959 hasConcept C162324750 @default.
- W4926959 hasConcept C187320778 @default.
- W4926959 hasConcept C18903297 @default.
- W4926959 hasConcept C205649164 @default.
- W4926959 hasConcept C34447519 @default.
- W4926959 hasConcept C39432304 @default.
- W4926959 hasConcept C41008148 @default.
- W4926959 hasConcept C49204034 @default.
- W4926959 hasConcept C50477045 @default.
- W4926959 hasConcept C50644808 @default.
- W4926959 hasConcept C53739315 @default.
- W4926959 hasConcept C58640448 @default.
- W4926959 hasConcept C76886044 @default.
- W4926959 hasConcept C86803240 @default.
- W4926959 hasConcept C94966114 @default.
- W4926959 hasConceptScore W4926959C119857082 @default.
- W4926959 hasConceptScore W4926959C126197015 @default.
- W4926959 hasConceptScore W4926959C126645576 @default.
- W4926959 hasConceptScore W4926959C127313418 @default.
- W4926959 hasConceptScore W4926959C146834321 @default.
- W4926959 hasConceptScore W4926959C154945302 @default.
- W4926959 hasConceptScore W4926959C162324750 @default.
- W4926959 hasConceptScore W4926959C187320778 @default.
- W4926959 hasConceptScore W4926959C18903297 @default.
- W4926959 hasConceptScore W4926959C205649164 @default.
- W4926959 hasConceptScore W4926959C34447519 @default.
- W4926959 hasConceptScore W4926959C39432304 @default.
- W4926959 hasConceptScore W4926959C41008148 @default.
- W4926959 hasConceptScore W4926959C49204034 @default.
- W4926959 hasConceptScore W4926959C50477045 @default.
- W4926959 hasConceptScore W4926959C50644808 @default.
- W4926959 hasConceptScore W4926959C53739315 @default.
- W4926959 hasConceptScore W4926959C58640448 @default.
- W4926959 hasConceptScore W4926959C76886044 @default.
- W4926959 hasConceptScore W4926959C86803240 @default.
- W4926959 hasConceptScore W4926959C94966114 @default.
- W4926959 hasLocation W49269591 @default.
- W4926959 hasOpenAccess W4926959 @default.
- W4926959 hasPrimaryLocation W49269591 @default.
- W4926959 hasRelatedWork W1032246516 @default.
- W4926959 hasRelatedWork W1491907892 @default.
- W4926959 hasRelatedWork W2059995503 @default.
- W4926959 hasRelatedWork W2078477703 @default.
- W4926959 hasRelatedWork W2084254573 @default.
- W4926959 hasRelatedWork W2151020214 @default.
- W4926959 hasRelatedWork W2183806039 @default.
- W4926959 hasRelatedWork W2184823216 @default.
- W4926959 hasRelatedWork W2260090002 @default.
- W4926959 hasRelatedWork W2517914593 @default.
- W4926959 hasRelatedWork W2615023666 @default.
- W4926959 hasRelatedWork W2810988794 @default.
- W4926959 hasRelatedWork W2893138695 @default.
- W4926959 hasRelatedWork W2921283045 @default.
- W4926959 hasRelatedWork W3065859580 @default.
- W4926959 hasRelatedWork W3157801918 @default.
- W4926959 hasRelatedWork W3164779581 @default.
- W4926959 hasRelatedWork W3203456934 @default.
- W4926959 hasRelatedWork W3205663109 @default.
- W4926959 hasRelatedWork W173317546 @default.
- W4926959 isParatext "false" @default.
- W4926959 isRetracted "false" @default.
- W4926959 magId "4926959" @default.
- W4926959 workType "article" @default.