Matches in SemOpenAlex for { <https://semopenalex.org/work/W49895931> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W49895931 endingPage "310" @default.
- W49895931 startingPage "275" @default.
- W49895931 abstract "the classification of objects into categories (Bailey, 1994). To classify an object as a member of a category, we must have explicit or implicit understanding about how the objects can be similar or different. For example, some persuasive strategies use references to authority (e.g., experts, parental figures), whereas others may reference friends. Are these similar kinds of strategies? How would a researcher know how a person classifies persuasive strategies? As one might imagine, knowing how we classify is more complex than knowing that we classify. This chapter covers how to use scaling and clustering statistical methods—to address questions of interest to communication researchers. Borg and Groenen (1997) identified several goals of scaling and clustering procedures (see also Aldenderfer & Blashfield, 1986; Bailey, 1994; Kruskal & Wish, 1978). One goal is to simplify and describe data. All scaling and clustering methods help researchers reduce the complexity of a data set by identifying the underlying structure within a set of data. As an example, Wish (1976) wanted to know how people perceive different kinds of interpersonal situations. Using multidimensional scaling, he discovered four dimensions along which interpersonal situations varied: (1) cooperative and friendly versus competitive and hostile, (2) equal versus unequal, (3) socioemotional and informal versus task-oriented and formal, and (4) intense versus superficial. Another example is a study by Hamilton and Nowak (2005) tracing the development of scholarship within the Information Systems Division (Division 1) of the International Communication" @default.
- W49895931 created "2016-06-24" @default.
- W49895931 creator A5071562764 @default.
- W49895931 date "2008-01-01" @default.
- W49895931 modified "2023-10-13" @default.
- W49895931 title "Scaling and Cluster Analysis" @default.
- W49895931 cites W1580773443 @default.
- W49895931 cites W1666032117 @default.
- W49895931 cites W1705258959 @default.
- W49895931 cites W1721472800 @default.
- W49895931 cites W1973755182 @default.
- W49895931 cites W1976376708 @default.
- W49895931 cites W1987120820 @default.
- W49895931 cites W1991021028 @default.
- W49895931 cites W1999401596 @default.
- W49895931 cites W2005471817 @default.
- W49895931 cites W2007914744 @default.
- W49895931 cites W2012380542 @default.
- W49895931 cites W2024570664 @default.
- W49895931 cites W2026762972 @default.
- W49895931 cites W2029643854 @default.
- W49895931 cites W2035685700 @default.
- W49895931 cites W205135556 @default.
- W49895931 cites W2059975159 @default.
- W49895931 cites W2079242396 @default.
- W49895931 cites W2104907288 @default.
- W49895931 cites W2116411927 @default.
- W49895931 cites W2143208332 @default.
- W49895931 cites W2152508857 @default.
- W49895931 cites W2155097587 @default.
- W49895931 cites W2196937963 @default.
- W49895931 cites W2496585406 @default.
- W49895931 cites W2798543290 @default.
- W49895931 cites W2896536455 @default.
- W49895931 cites W3099839986 @default.
- W49895931 doi "https://doi.org/10.4135/9781452272054.n10" @default.
- W49895931 hasPublicationYear "2008" @default.
- W49895931 type Work @default.
- W49895931 sameAs 49895931 @default.
- W49895931 citedByCount "4" @default.
- W49895931 countsByYear W498959312013 @default.
- W49895931 countsByYear W498959312014 @default.
- W49895931 countsByYear W498959312017 @default.
- W49895931 countsByYear W498959312020 @default.
- W49895931 crossrefType "book-chapter" @default.
- W49895931 hasAuthorship W49895931A5071562764 @default.
- W49895931 hasConcept C111919701 @default.
- W49895931 hasConcept C164866538 @default.
- W49895931 hasConcept C2524010 @default.
- W49895931 hasConcept C33923547 @default.
- W49895931 hasConcept C41008148 @default.
- W49895931 hasConcept C99844830 @default.
- W49895931 hasConceptScore W49895931C111919701 @default.
- W49895931 hasConceptScore W49895931C164866538 @default.
- W49895931 hasConceptScore W49895931C2524010 @default.
- W49895931 hasConceptScore W49895931C33923547 @default.
- W49895931 hasConceptScore W49895931C41008148 @default.
- W49895931 hasConceptScore W49895931C99844830 @default.
- W49895931 hasLocation W498959311 @default.
- W49895931 hasOpenAccess W49895931 @default.
- W49895931 hasPrimaryLocation W498959311 @default.
- W49895931 hasRelatedWork W2094653465 @default.
- W49895931 hasRelatedWork W2130043461 @default.
- W49895931 hasRelatedWork W2350741829 @default.
- W49895931 hasRelatedWork W2358668433 @default.
- W49895931 hasRelatedWork W2376932109 @default.
- W49895931 hasRelatedWork W2382290278 @default.
- W49895931 hasRelatedWork W2390279801 @default.
- W49895931 hasRelatedWork W2748952813 @default.
- W49895931 hasRelatedWork W2899084033 @default.
- W49895931 hasRelatedWork W2530322880 @default.
- W49895931 isParatext "false" @default.
- W49895931 isRetracted "false" @default.
- W49895931 magId "49895931" @default.
- W49895931 workType "book-chapter" @default.