Matches in SemOpenAlex for { <https://semopenalex.org/work/W5106530> ?p ?o ?g. }
- W5106530 abstract "In this thesis we report the synthesis, characterization and thermo-mechanical properties of a high-temperature resistant themoset nanocomposite system based on an aero-space-grade Bismaleimide resin. Various processing techniques with various fillers are used. The emphasis is on establishing the relationship between the structure and mechanical properties of nanocomposite systems. We characterized the nanocomposite systems experimentally using rheology, X-ray diffraction, Thermo-mechanical and microscopic techniques. The mechanical properties e.g. viscoelastic properties are interpreted in terms of the microstructure and explained by using micromechanical and viscoelastic models. In order to get insight into the structure of clay particles in the form of suspension we studied the rheology of organoclay dispersions before curing. We investigated the development of organoclay dispersions over time with the help of rheometry by applying small amplitude oscillatory deformation. Dispersions evolve over time with distinct stages into a percolating network. In most of the cases with various clay concentrations the behavior of dispersions was elastic solids-like. There is a critical threshold concentration of clay particles at which the dispersions initially behave as elastic solids and below which they form viscous fluids. This critical threshold seems to coincide with overlap concentration of the bodies of revolution of the particles, which is at a low clay concentration (of the order of 0.5% w/w). This overlapping of the bodies of revolution of particles may also limit the degree of exfoliation. Complete exfoliation is hardly ever achieved, as usually the concentration of particles used is much larger than the critical threshold concentration. Moreover, surprisingly, the frequency dependency of the mechanical moduli of the dispersions resemble that of a critical gel (a system just at the cross over between a visco-elastic solid and a visco-elastic fluid), normally reported for cross-linking polymers. This aspect has not been highlighted yet for clay dispersions. Interestingly the critical gel-like behavior of the dispersions persisted throughout the evolution over time. Thermo-mechanical properties of nanocomposite systems prepared with both carbon nanofiber and organoclay were investigated. The matrix itself and the nanocomposite system show excellent thermal properties and reasonable mechanical properties, better than the normal engineering polymers. The use of carbon nanofiber did not produce significant improvement in mechanical properties due to the poor adhesion of the fiber with the matrix. However, the use of organo clays shows systematic increase in mechanical properties and heat deflection temperature with the concentration of clay particles. The evaporation of solvent during curing leads to alignment of clay particles, which may also be beneficial for the properties of the nanocomposite. The stiffness of the nanocomposite was modeled by the Halpin-Tsai model. The model reproduces the data reasonably well. XRD results and the apparent aspect ratio obtained by Halpin-Tsai fitting indicate that the nanocomposite system is not completely exfoliated, and that the degree of exfoliation decreases with increasing particle concentration. We also investigated creep behavior of the nanocomposite system. The matrix shows very good creep stability and the use of nanofiller further enhances it. Application of the Findley power law and the Burgers model, which are widely used to describe the creep behavior of polymers, is critically evaluated. Their limitations to describe the creep behavior of thermoset matrices are discussed. We used a modified form of Burgers’ model which we named the ‘stretched Burgers model’ (SB) to describe the creep behavior of thermoset matrix and the nanocomposite. The stretched Burgers model reproduces the time-dependent creep compliance remarkably well. We made assumptions in fitting the data that retardation time scale distribution should be independent of filler concentration. The very good fitting of data supports the assumption. This means that the dynamics of the nanocomposite system is mainly governed by the dynamics of the matrix. This is an interesting assumption in our study and never highlighted in creep studies of nanocomposites. We believe that this finding is helpful for developing a better understanding of the mechanics of nanocomposites and of the role of filler on the dynamics of the matrix, which is greatly debated. The stretched Burgers model appears to be very suitable for describing the creep behavior of thermoset systems both from a physical point of view and concerning the quality of the fits." @default.
- W5106530 created "2016-06-24" @default.
- W5106530 creator A5072183069 @default.
- W5106530 date "2013-06-03" @default.
- W5106530 modified "2023-09-23" @default.
- W5106530 title "Structure-Property Relationship of Thermoset Nanocomposites" @default.
- W5106530 cites W1513036161 @default.
- W5106530 cites W1558786924 @default.
- W5106530 cites W1785332051 @default.
- W5106530 cites W1963511546 @default.
- W5106530 cites W1966645229 @default.
- W5106530 cites W1968118316 @default.
- W5106530 cites W1968720142 @default.
- W5106530 cites W1971469288 @default.
- W5106530 cites W1971587865 @default.
- W5106530 cites W1972484197 @default.
- W5106530 cites W1973618326 @default.
- W5106530 cites W1975395488 @default.
- W5106530 cites W1975876104 @default.
- W5106530 cites W1976546360 @default.
- W5106530 cites W1977570914 @default.
- W5106530 cites W1977628422 @default.
- W5106530 cites W1979441542 @default.
- W5106530 cites W1980212798 @default.
- W5106530 cites W1980670492 @default.
- W5106530 cites W1980807064 @default.
- W5106530 cites W1981339964 @default.
- W5106530 cites W1981787269 @default.
- W5106530 cites W1981817482 @default.
- W5106530 cites W1983277913 @default.
- W5106530 cites W1983420681 @default.
- W5106530 cites W1983503400 @default.
- W5106530 cites W1984337610 @default.
- W5106530 cites W1984531634 @default.
- W5106530 cites W1986055226 @default.
- W5106530 cites W1988611528 @default.
- W5106530 cites W1988941032 @default.
- W5106530 cites W1989103586 @default.
- W5106530 cites W1989954788 @default.
- W5106530 cites W1991272188 @default.
- W5106530 cites W1994954578 @default.
- W5106530 cites W1996065253 @default.
- W5106530 cites W1996145708 @default.
- W5106530 cites W1997171896 @default.
- W5106530 cites W1999363119 @default.
- W5106530 cites W2002145734 @default.
- W5106530 cites W2002152547 @default.
- W5106530 cites W2002733308 @default.
- W5106530 cites W2007924912 @default.
- W5106530 cites W2008418931 @default.
- W5106530 cites W2009303944 @default.
- W5106530 cites W2009357496 @default.
- W5106530 cites W2010086263 @default.
- W5106530 cites W2015384588 @default.
- W5106530 cites W2016077802 @default.
- W5106530 cites W2018129914 @default.
- W5106530 cites W2018528680 @default.
- W5106530 cites W2019334107 @default.
- W5106530 cites W2019470626 @default.
- W5106530 cites W2022369571 @default.
- W5106530 cites W2022429553 @default.
- W5106530 cites W2024634010 @default.
- W5106530 cites W2026000204 @default.
- W5106530 cites W2027783839 @default.
- W5106530 cites W2028798557 @default.
- W5106530 cites W2029812394 @default.
- W5106530 cites W2032144811 @default.
- W5106530 cites W2032861512 @default.
- W5106530 cites W2034084316 @default.
- W5106530 cites W2036456396 @default.
- W5106530 cites W2036889658 @default.
- W5106530 cites W2037600909 @default.
- W5106530 cites W2040147236 @default.
- W5106530 cites W2040548679 @default.
- W5106530 cites W2041723514 @default.
- W5106530 cites W2042626809 @default.
- W5106530 cites W2043059053 @default.
- W5106530 cites W2047575344 @default.
- W5106530 cites W2047855321 @default.
- W5106530 cites W2048737218 @default.
- W5106530 cites W2048861891 @default.
- W5106530 cites W2049026528 @default.
- W5106530 cites W2050847685 @default.
- W5106530 cites W2052688639 @default.
- W5106530 cites W2052727654 @default.
- W5106530 cites W2053200600 @default.
- W5106530 cites W2057773657 @default.
- W5106530 cites W2059438525 @default.
- W5106530 cites W2062702000 @default.
- W5106530 cites W2062875138 @default.
- W5106530 cites W2064918694 @default.
- W5106530 cites W2065056467 @default.
- W5106530 cites W2065193963 @default.
- W5106530 cites W2065976260 @default.
- W5106530 cites W2067456255 @default.
- W5106530 cites W2068041765 @default.
- W5106530 cites W2068234923 @default.
- W5106530 cites W2070549672 @default.
- W5106530 cites W2072341164 @default.
- W5106530 cites W2072659566 @default.